高中數學的學習方法
在生活、工作和學習中,大家都需要每天學習,吸收有用的知識。掌握學習方法,能夠幫助大家節省學習時間,提高學習效率。那么,怎樣學習才能更高效呢?以下是小編為大家收集的高中數學的學習方法,希望對大家有所幫助。
高中數學的學習方法
1、一本書
就是教科書,這是基礎的基礎,但是被中等生最忽視的。筆者高中時,先看教科書再做題,所以往往同學做到第5題,我才剛開始,但當我做了20題時,反過來發現同學做到第17題,這就是磨刀不誤砍柴工。最后不僅省時,而且比同學多鞏固了書本知識,然后從書本原理到題目及從題目到原理走了一個來回,培養了以理論解決實際問題的能力,提高了以不變應萬變的能力。一句話,省時又高效。為擺脫題海打下了基礎。
2、兩方法
1)找到已知與求解的“橋梁”。主要針對中等題及難題,利用已知,推一步或幾步,完成轉化,從求解往后推幾步,看看還缺什么,再去回憶腦袋里的知識點及解過的經典題,把已知與求解的差距補上,這個就是“橋梁”原理。
2)有些題按上述方法還遇到困難,可能需要另辟蹊徑,如從定義出發或需要再審視已知條件,可能還未用盡已知條件或有些暗含的已知條件未挖掘出來。
3、三步驟
1)先看教科書,真正搞懂課本例題,并做課后練習(雖然看上去很簡單,但是實質上就是要你檢查自己是否真的掌握這些基本知識點。),2)利用歷年高考真題,這些題很有價值,先掩著答案,根據你之前課本學的基礎內容,嘗試自己親自動手做一下,再對答案,明白其原理,真正弄懂它,看看能否舉一反三,可問老師及同學,也可請家教,最后達到觸類旁通。
3)同步練習,必須緊跟課程,不能賴下來的,一步一個腳印去做。
數學知識點較多,容易忘記,但以上的步驟你都能做到的話,那么就不那么容易遺忘,即使忘記,你也可以翻閱以前的內容重新鞏固一遍。
4、四層次
1)基本知識點。含概念、定義、定理、公式等,這是基礎,這個不過關,其他免談。筆者平時先看教科書,就是這個道理。--這部分,雖然重要,但筆者輔導不作重點,只是檢查與提醒,因為可自學及問自己老師同學。會這個的人太容易找到了。
2)數學思想與數學技能。數學思想如方程函數思想、數形結合思想、對稱思想、分類討論思想,化歸思想;數學技能如配方、待定系數法等。筆者由于這方面強,故多年不做題或見到陌生題均不慌,因為這些思想能力是深入骨髓的。
3)數學模型與中間結論。數學模型就是具體題目的解題套路,中間結論可使學生減少解題步驟,加快解題速度,減少出錯機會。這些有了2數學思想與數學技能,就能自己推導出來,但要注意總結與積累。
4)特殊解題技巧。這個要求以上3方面都較強,聰明加靈感,平時善于總結與歸納,看透事物本源,熟能生巧,觸類旁通。故對中等生不作過高要求,所謂可遇而不可求。筆者對高考實考試卷的選擇與填空,特別是選擇,有相當部分,有的試卷甚至一半以上可在題讀完后,幾秒得出正確答案。
高中數學的學習方法
高中數學一直是學生非常注重的科目,高考復習過程中,數學也成為考生較為重視的科目,學好高中數學就要掌握一定的學習方法。
1、構建知識脈絡
要學會構建知識脈絡,數學概念是構建知識網絡的出發點,也是數學高考考查的重點。
因此,我們要掌握好代數中的數、式、不等式、方程、函數、三角比、統計和幾何中的平行線、三角形、四邊形、圓的概念、分類,定義、性質和判定,并會應用這些概念去解決一些問題,這是快速提升高考數學成績的復習方法之一。
2、建立病例檔案
準備一本數學學習“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,這個也是快速提升高考數學成績的復習方法,并且經常地拿出來看看、想想錯在哪里,為什么會錯,怎么改正,這樣到高考時你的數學就沒有什么“病例”了。
這是高考數學的得分技巧,我們要在教師的指導下做一定數量的數學習題,積累解題經驗、總結解題思路、形成解題思想、催生解題靈感、掌握學習方法。
3、強化題組訓練
除了做基礎訓練題、平面幾何每日一題外,還可以做一些綜合題,并且養成解題后反思的習慣。
這也是高考數學的得分技巧,反思自己的思維過程,反思知識點和解題技巧,反思多種解法的優劣,反思各種方法的縱橫聯系。
而總結出它所用到的數學思想方法,并把思想方法相近的題目編成一組,不斷提煉、不斷深化,做到舉一反三、觸類旁通。
逐步學會觀察、試驗、分析、猜想、歸納、類比、聯想等思想方法,主動地發現問題和提出問題。
高中數學的學習方法
在大學課程的學習中,有諸多的公共基礎課程,而大學數學就是其中很重要的一門,是幾乎各個專業后續學習的基礎,同時也是培養我們邏輯思維能力的有力工具,大學數學對剛剛從高中數學模式轉變過來的學生學習有著非常大的影響。通過上課現狀來看,大學一年級學生普遍反映數學難學,學習積極性不高。數學本身就是一門比較抽象的、而且邏輯性較強的課程,如果沒有動力和積極性去研究,非常不容易把握。而且從高中數學跨越到大學數學,跨度較大,在一開始的學習中感到非常不適應。另外,大學數學的自主學習能力要求較高,突然脫離了傳統的學習模式,導致我們有點手忙腳亂,抓不著重點。在從高中數學到大學數學的跨越中,我們首先要看到兩者之間的差異,進而采取有效的措施銜接兩者,使我們在大學數學的學習中能很好的從高中數學的學習模式中過渡過來。
一、學習過程中大學數學與高中數學存在的主要差異
(一)高中數學與大學數學在教學目標上存在的差異所以多數時候就是運用題海戰術應付考試取得滿意的結果,高中數學比較淡化對體系的認知。而大學數學老師是培養學生的綜合運用能力,通過對數學基礎知識的學習,是我們學生了解高數的思想,用科學的方法應對實際中的問題,并探索創新能力,同時大學數學很重要的一點是培養學生的自學能力。
(二)高中數學與大學數學在教學方法上存在的差異高中數學在學習進度保證的同時趕超的是知識點的掌握程度。進度相對來說比較慢,主要是通過課堂高密度提問和細致的分析,反復對知識點進行訓練,將知識點滲透到學生的理解中,并且在高中數學中老師是有足夠的時間去輔導學生練習的。而大學數學,課程進度就相當得快,而且課堂的知識容量非常大,學生并不能當堂就消化掉所有的東西,大學數學更注重的是概念的理解和實際的運動,比較側重于學生的自主學習能力,在認識數學理念的同時,引導學生自主的思考問題并運用到實際中解決問題。
(三)高中數學與大學數學在教學模式上存在的差異高中數學,教師處于主導地位,學生處于被動地位。就是老師教什么學生學什么,他注重的是知識的傳授和對學生知識掌握的訓練。而大學數學注重的是知識產生的過程,在大學數學的教學中,學生處于主導地位,教師只是引導。通過教師的引導,自主學習和探討,激發學生學習的積極性和創造力。
(四)高中數學與大學數學在知識結構上存在的差異近代數學思想滲透在高中數學中,如函數、集合、概率等,廣度深度上比較淺顯。而且高中數學重視的是理論的推導,概念內涵不夠深。而大學數學,理論性比較強,內容比較抽象,而且數學符號大量出現,學生接受起來比較困難。
二、找到大學數學與高中數學的銜接之處
(一)發現大學數學與高中數學教學內容的銜接之處
首先要精簡兩者重復的內容,有些知識既出現在高中數學中,也出現在大學數學中,作為這一部分就需要精簡知識,我們在學習的時候就要做對此部分知識的篩選。其次就是要補充高中數學刪除或涉及較淺的內容,有一些大學數學中的知識在高中數學中略被提及,講解較淺,或者直接被刪除放出,作為這一部分知識,我們就要作為大學數學的必備知識抓起來,這樣才能避免知識的脫節。兩者相互結合才能加強對整個數學知識的了解,才不至于阻礙后面知識的深入。再次就是要加強所學知識的應用型。大學數學講究的是能活學活用,學到的知識能與生活實際聯系起來,高中數學的知識就如我們身邊的必備工具一樣,我們結合兩者的長處在生活中加以運用,激發我們對于數學的學習興趣。
(二)尋找大學數學與高中數學數學思想與學習方法的銜接之處
高中數學引導學生利用所學知識解決問題,讓學生逐漸建立科學的數學思想方法提高學生的數學思維能力。大學數學是高中數序的深層次教育,就要利用現代的思想和方法引導傳統知識,加強現在數學意識的滲透。在實際教學過程中關注當代數學研究的前沿問題將其滲透到數學知識的應用中,安排開放性問題供學生業余進行探究。在高中數學中多媒體技術已經開始使用,高中數學知識已經變得比較直觀生動,非常有利于學生掌握和理解知識。
三、做好大學數學與高中數學學習方法轉換的方法
(一)大學數學學習要注重課程的課前預習
上課知識量大,涉及面廣以及理論性強是眾所周知的大學數學的特點,并且內同極具抽象性和嚴謹性,所以要在課堂上很好的消化知識就要做適當的課前預習。只有課前預習,才能知曉自己的疑問,帶著問題上課,能夠有針對性的解決自己的問題,效率大大提高。
(二)做好大學數學的課堂聽課筆記
將老師在課堂上所講解的重點難點記錄下來,課后好好鉆研,隨時回顧,提高學習主動性。
(三)課后善于歸納和總結
大學數序知識每節之間都是緊密相連層層遞進的,我們只有做好歸納總結,才能將知識出阿聯,形成完整知識構架和體系。
(四)善于提出自己的問題
對大學數序的學習要善于思考,善于提問,用已有的知識,自己去發現解決新問題,或者在原有的基礎上領悟一個新道理,從而產生新的思維,培養創新精神和意識。
高中數學和大學數學共同承擔著構架數學知識體系的重擔,二者缺一不可,密不可分。兩者的有效銜接才能發揮更大功效。通過對大學和高中數學之間的差異以及銜接之處的簡要分析,從教學內容和教學思想兩個方面提出高中數學和大學數學教學銜接的應對策略期望,對于提高我們的大學數學學習效果起著重要的作用。
高一數學學好的方法
首先對高一新生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。
其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會采用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會“提出問題—實驗探究—開展討論—形成新知—應用反思”的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。
最后,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恒心,更要有一顆平常心。
高中數學提分方法
第一要養成預習的習慣。這是我多年學習數學的一個好方法,因為提前把老師要講的知識先學一遍,就知道自己哪里不會,學的時候就有重點。當然,如果完全自學就懂更好了。
第二是書后做練習題。預習完不是目的,有時間可以把例題和課后練習題做了,檢查預習情況,如果都會做說明學會了,即使不會還能再聽老師講一遍。
第三個步驟是做老師布置的作業,認真做。做的時候可以把解題過程直接寫在題目旁邊,比如選擇題和填空題,因為解答題有很多空白處可寫。這樣做的好處就是,老師講題時能跟上思路,不容易走神。
第四個學好數學的方法是整理錯題。每次考試結束后,總會有很多錯題,對于這些題目,我們不要以為上課聽懂了就會做了,看花容易繡花難,親手做過了才知道會不會。而且要把錯的題目對照書本去看,重新學習知識。
第五個提高數學成績的方法是查缺補漏。在做了大量習題以后,數學成績有所提高,但還是存在一些不會做的題目,我們要善于發現哪些類型的題目還存在盲區,然后逐一擊破。
高中數學學習方法
數學的考察主要還是基礎知識,難題也不過是在簡單題的基礎上加以綜合。所以課本上的內容很重要的,如果課本上的知識都不能掌握,就沒有觸類旁通的資本。
對課本上的內容,上課之前最好能夠首先預習一下,否則上課時有一個知識點沒有跟上老師的步驟,下面的就不知所以然了,如此惡性循環,就會開始厭煩數學,對學習來說興趣是很重要的。課后針對性的練習題一定要認真做,不能偷懶,也可以在課后復習時把課堂例題反復演算幾遍,畢竟上課的時候,是老師在進行題目的演算和講解,學生在聽,這是一個比較機械、比較被動的接受知識的過程。也許你認為自己在課堂上聽懂了,但實際上你對于解題方法的理解還沒有達到一個比較深入的程度,并且非常容易忽視一些真正的解題過程中必定遇到的難點。“好腦子不如爛筆頭”。對于數理化題目的解法,光靠腦子里的大致想法是不夠的,一定要經過周密的筆頭計算才能夠發現其中的難點并且掌握化解方法,最終得到正確的計算結果。
其次是要善于總結歸類,尋找不同的題型、不同的知識點之間的共性和聯系,把學過的知識系統化。舉個具體的例子:高一代數的函數部分,我們學習了指數函數、對數函數、冪函數、三角函數等好幾種不同類型的函數。但是把它們對比著總結一下,你就會發現無論哪種函數,我們需要掌握的都是它的表達式、圖像形狀、奇偶性、增減性和對稱性。那么你可以將這些函數的上述內容制作在一張大表格中,對比著進行理解記憶。在解題時注意函數表達式與圖形結合使用,必定會收到好得多的效果。
最后就是要加強課后練習,除了作業之外,找一本好的參考書,盡量多做一下書上的練習題(尤其是綜合題和應用題)。熟能生巧,這樣才能鞏固課堂學習的效果,使你的解題速度越來越快。
高中數學的學習方法
考試的內容與要求
函數是描述數學對象變化規律的重要教學模型,是中學數學的主體內容。函數在中學階段分別設有函數(函數概念、單調性、奇偶性、周期性、對稱性、極值、圖象等),指數函數與對數函數,三角函數,函數的應用等。它既是初中函數內容的繼續與提高,也為高中數學的進一步學習奠定基礎。
向量是既有大小又有方向的量,具有“數”和“形”的雙重特點,是一種廣泛應用的數學工具。平面向量學習的主要內容是四種運算,共線與垂直的判斷方法,夾角與長度的計算等。
本次期末考試對上述內容的考查,既全面又突出重點,既注重知識的指導性與思想性,又考慮到各個章節的考試要求和相對獨立性,所以建議在期末復習時,要注重基本概念、基本符號、基本性質、基本運算的復習與檢查落實,選擇一些體現數學思想、數學方法、有助于提高學生能力的典型題目進行鞏固訓練,達到提高復習效果的目的。
具體步驟
1、回歸課本、明確復習范圍及重點范圍
本學期我們高一學習了必修1、必修4兩本教材。先把考查的內容分類整理,理清脈絡,使考查的知識在心中形成網絡系統,并在此基礎上明確每一個考點的內涵與外延。在建立知識系統的同時,同學們還要根據考綱要求,掌握試卷結構,明確考查內容、考查的重難點及題型特點、分值分配,使知識結構與試卷結構組合成一個結構體系,并據此進一步完善自己的復習結構,使復習效果事半功倍。
2、弄懂基本概念
先把你以前學過的卻不懂的知識,概念,定理再結合課本、筆記復習,直到弄懂為止。
3、弄會基本方法
復習課上,老師會把最基本,最重要的思想、方法再過一遍,這時候一定認真聽(為什么有的同學好像平時沒怎么好好學,可是考試成績不錯呢,就是因為他抓緊了這段時間),當然,既然是“過”一遍,不可能還像剛開始講課那樣詳細,因此課后你一定要對老師講的方法做針對性練習,真正把數學復習計劃落實到實處。
熟練掌握數學方法,以不變應萬變。一般同一份試卷,相同方法不可能出現多次;同時,數學的主要方法在一份試卷上基本都能用得上。因此遇到思路一下不能突破的難題,要好好想想以前遇到的類似的問題是如何處理的,在已經作答好的題目中用過了哪些方法,常用的方法還有哪些沒用得上,能否用來解決這個難題,只要平時多加分析,是不難發現解題思路的。
三、考試方法指導
1、規范作答爭取少扣分
一些同學考試時題題被扣分,大多是答題不規范,抓不住得分要點。如立體幾何證明的次要條件要交待,分類討論問題最后有綜上可得,應用題最后要回答題目的設問,函數應用題要有定義域等。另外,有的題目是你以前會做,但是過這么長時間了,有可能思路忘了;有的題目你有思路,但是具體的一些解題細節不一定很清楚。的克服辦法就是,數學復習計劃中,無論做沒做過,以前是否會做,都當成新題再做一遍!
2、掌握好看與做的時間分配
好多同學都覺得幾天不做數學題后再考試,審題就會遲疑緩慢,入手不順,運算不暢且易出錯。所以每天必須堅持做適量的練習,特別是重點和熱點題型,防止思想退化和惰化,保持思維的靈活和流暢。特別是停課復習期間,更要掌握好看和做的時間分配。
3、解題過程
(1)弄清問題.即從題目本身去獲得從何處下手、向何方前進的信息。要逐字逐句地分析條件、分析結論、分析條件與結論之間的關系。
(2)擬定計劃.也就是尋找解題思路。
(3)實現計劃.就是把打通了的解題思路用文字具體表達出來。做到:方法簡單、起點明確、層次清楚、定理準確、論證嚴密、書寫規范。
掌握每一個公式定理
做課本的例題,課本的例題的思路比較簡單,其知識點也是單一不會交叉的,如果課本上的例題你拿出來都會做了,說明你已經具備了一定的理解力。
做課后練習題,前面的題是和課本例題一個級別的,如果課本上所有的題都會做了,那么基礎夯實可以告一段落。
進行專題訓練提高數學成績
1.做高中數學題的時候千萬不能怕難題!有很多人數學分數提不動,很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導數,看到稍微長一點的復雜一點的敘述,甚至看到21、22就已經開始退卻了。這部分的分數,如果你不去努力,永遠都不會掙到的,所以第一個建議,就是大膽的去做。前面虧欠數學這門學科太多,就算讓它打腫了又怎樣,后面一點一點的強大起來,總有那么一天你去打它的臉。
2.錯題本怎么用。和記筆記一樣,整理錯題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什么記什么,那只能說明你這節課根本沒聽,真正有效率的人,是會把知識簡化,把書本讀薄的。先學學你能思考到答案的哪一步,學著去偷分。當然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。
高中數學的學習方法
現代數學上的三大難題:
一是有20棵樹,每行四棵,古羅馬、古希臘在16世紀就完成了16行的排列,18世紀高斯猜想能排18行,19世紀美國勞埃德完成此猜想,20世紀末兩位電子計算機高手完成20行紀錄,跨入21世紀還會有新突破嗎?
二是相鄰兩國不同著一色,任一地圖著色最少可用幾色完成著色?五色已證出,四色至今僅美國阿佩爾和哈肯,羅列了很多圖譜,通過電子計算機逐一理論完成,全面的邏輯的人工推理證明尚待有志者。
三是任三人中可證必有兩人同性,任六人中必有三人互相認識或互相不認識(認識用紅線連,不認識用藍線連,即六質點中二色線連必出現單色三角形)。近年來國際奧林匹克數學競賽也圍繞此類熱點題型遴選后備攻堅力量。(如十七個科學家討論三課題,兩兩討論一個題,證至少三個科學家討論同一題;十八個點用兩色連必出現單色四邊形;兩色連六個點必出現兩個單色三角形,等等。)單色三角形研究中,尤以不出現單色三角形的極值圖譜的研究更是難點中之難點,熱門中之熱門。
歸納為20棵樹植樹問題,四色繪地圖問題,單色三角形問題。通稱現代數學三大難題。
高中數學成績下降是什么原因
智者形容數學:“思維的體操,智慧的火花”。“最能考察或驗證一個人具備智慧多少的一門學問或學科”!在當今知識經濟時代,數學正在從幕后走向臺前,它與計算機技術的結合在許多方面直接為社會創造價值,推動了社會生產力的發展。數學是人類文化的重要組成部分之一,它已成為公民所必須具備的一種基本素質。數學在形成人類理性思維的過程中發揮著獨特的、不可替代的作用。于是呼,沖刺高考時選學理者多多,且發誓要用數學拉動高考總成績者眾多。可喜可賀!作為衡量一個人能力的重要學科---數學。從小學到,對它情有獨鐘的大有人在,且大都投入了大量的時間與精力.然而我們也不能忽視另一種事實:并非人人都是成功者!許多小學、時期的數學成績佼佼者,進入高中階段,第一個跟頭就栽在了數學上。對選學文科的成功者的一項調查也表明,雖然他們高中也很想學好數學,可數學成績就是提不上來,于是折射形成了“最怕”見高中數學老師的現象。這種“懼怕”高中數學的現象目前是比較普遍的,應當引起重視。當然造成這種現象的原因是多方面的。本文僅就學生的學習狀態方面淺談一下影響高中數學成績下降的原因及解決方法面對眾多初中數學學習的成功者淪為高中學習的失敗者,筆者對他們的學習狀態進行了調研。結果表明:造成成績滑坡的主要原因有以下幾個方面.
1.被動學習.許多同學進入高中后,還像初中那樣,有很強的依賴心理:跟隨老師慣性運作。沒有掌握學習的主動權.其表現有:不定計劃,坐等上課,課前不預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”.一切的一切造成沒能真正理解所學內容的無奈表態。
2.學不得法.老師上課一般都要講述知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課不能做到專心聽講,對要點聽不清或聽不全。于是筆記記了一大本,問題留了一大堆。而課后呢,又不能及時鞏固、總結,找不到知識間的聯系,只是一味地趕做作業,亂套題型。對概念、法則、公式、定理一知半解,死記硬背的結果是一味地“機械模仿”。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套。最終是事倍功半,收效甚微.
3.不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,一貫做法是只求知道怎么做,不去認真演算書寫。其心理誘因是僅對難題感興趣,以示自己的“水平”高。這種好高鶩遠,重“量”輕“質”的做法導致的結果是陷入題海,不自拔.而到正規作業或考試中卻是演算出錯或中途“卡殼”.
4.不具備進一步學習條件.高中數學與初中數學相比,知識的廣度、深度更進一程,能力要求更進一步.這就要求必須掌握基礎知識與基本技能,為進一步學習作好充分準備.高中數學很多地方難度大、方法新、分析能力要求高.如:二次函數在閉區間上的最值問題,函數值域的求法問題,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合的應用和實際應用問題解答等.客觀上,這些問題的能力要求就是數學學習的分化點,更何況有的數學知識點還是高、初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的.
所以,高中學生僅僅有想學的念頭是不夠的,還必須“會學”。要講究科學的學習策略和方法,以此提高學習效率,變被動學習為主動學習.針對學生學習中出現的上述情況,教師應當采取以加強學法指導為主,化解分化點為輔的對策:
1.加強學法指導,培養良好學習習慣。良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面.
高中數學學習方法
度過了貌似很輕松愉快的高一生活,我們昂首闊步來到了高二,對于數學一科,相當多的同學覺得高一階段的知識非常可怕,不夸張的說高一階段的知識比整個初中的知識問題還要多。如今到了高二,是不是知識更多更難了呢?
個人認為并不是這樣的,高一階段的知識強調的是理解,而高二階段強調的是功力和技巧。差別莘不在于難度,而在于學習的側重點,可以說高二的很多知識是對高一知識的深化和拓展。舉個例子,高一階段我們學習了函數的相關性質,其中很重要的一條是單調性。高一我們對這個知識點的要求是會用“比較法”判斷單調性,還要通過對圖像的分析來對函數單調性有直觀的感受。這些都昌對函數單調性的理解。到了高二階段,文科和理科學生都要學習一樣新的工具——導數,也就是我們慶不做函數圖像,也不用“取點比較”的情況下直接判斷函數的單調性和單調區間。而這種處理單調性問題的新方法需要的就是熟練掌握技巧和扎實的基本功。
還有幾何方面,高一階段我們大多數同學學過了直線和圓,這是解析幾何的初步,相信很多同學對于解析幾何復雜的運算至今還“意猶未盡”。那么到了高二階段,我們將要學習更加復雜的三類曲線——橢圓、雙曲線、拋物線。運算上難度大大增加,圖形的復雜度也大大增加,但是就本質來說,考察的核心還是“在圖形中尋找線索,在計算中得到結果”的解題思路。另外立體幾何中還要引入空間向量的方法,實際也是把幾何問題代數化,使同學用在復雜的立體圖形中找輔助線了,當然,空間向量法帶來的運算量也是相當大的。
最后在一些小知識上也有所深化,還記得當初在學習概率的時候,我們實際沒有學習任何的計算方法,當時我們算概率的時候只能一個一個的數出來,如果題目的數稍微大一點的話我們就不得不把大量的時間浪費在數數上,在高二我們就會學到高手是怎樣數數的,也就是所謂的計數原理,到時候同學業們就會知道“乘法”比“加法”究竟能快多少。也能徹底搞清楚生活中的隨機事件里究竟蘊含了怎樣的數學原理。
總體來說,高二數學的難度比高一要大,但是如果同學們在高一的時候對知識有深入的理解的話,高二階段的知識也就只是個深化練習的過程了,這就要求同學們在高二的時候造成不要放松,這個時期是最需要大量做題,大量練習的時期,錯過了這個時期就再也沒有機會超越別人了。有人會想高三再努力也不遲,殊不知高三的時候所有好好學習的人都會拼命的做題,拼命地練習,在那時想趕超別人幾乎是不可能完成的任務。高三環境是不努力的人必然跌入谷底。努力的人也只可以保證不下降。也就是說想超過別人,走在別人前面,高二已經是最后的機會了。
對于高一階段知識掌握的不夠扎實的同學,高二也是唯一可能提高的機會了,正像上文所說,高二的知識很多是高一知識的擴展和深化,也就是說如果之前學習的時候沒有掌握好,那么高二的學習就既是學習過程又是復習過程。高中階段學習節奏之快使得一開始落后一點的同學在之后的學習過程中幾乎沒有什么時間再回過頭來重新學習,也就是說如果想補救之知識漏洞,高中階段唯一可行的辦法就是在學習中復習。比如說如果有同學函數沒有學好,沒關系,高二學習導數的時候會再回來研究函數問題:平面向量沒學好,沒關系,學習空間向量的進修也可以順帶復習;直線和圓沒學好,沒關系,圓錐曲線比圓難多了,學好圓錐曲線之后再回去看圓就輕松多了。
總之,在數學學科,如果你想超越別人,高二是最好的機會,如果你想追上別人,高二是最后的機會。我們將迎來高中整個三年中最困難,最有挑戰,也是收益最大的一年。高考中數學的重要性無庸贅述,希望同學們能在高二的時候抓住機會,為了能有一個輕松的高三,也為了能有一個滿意的高考而努力。
高中數學學習方法簡介:
首先截取了一段別人的總結,和我的看法很一致,其中紅色部分為我的見解。
高中數學不想初中那樣按照老師教得套路一直走到底就可以不題目做出來,但高中數學也不是沒有規律可循的。我看到以為高中的老教師說過,高中數學一般的題目也就20道左右,只要掌握了其中的技巧就可以靈活自如,一般的題目也就沒有問題了。學數學,重在自己要思考和隨時整理,學過了那些內容,其核心的知識是什么,做過哪些題,都涉及那些知識點,用過哪些技巧?有時候老師會講,但有時候老師不會,所以要自己多加思考。思考無果,可以問老師。
我不喜歡題海戰術,但是又必須做題,任何想不做題不練習就有好成績的想法都是不切實際的。數學就是要多想多看多練。
高中數學學習方法:
1、認識高中數學的特點。
高中數學是數學的提高和深化,初中數學在教材表達上采用形象通俗的語言,研究對象多是常量,側重于定量計算和形象思維,而高中數學語言表達抽象。
2、正確對待學習中遇到的新困難和新問題。
在開始學習高中數學的過程中,肯定會遇到不少困難和問題,同學們要有克服困難的勇氣和信心,勝不驕,敗不餒,有一種“初生牛犢不怕虎”的精神,愈挫愈勇,千萬不能讓問題堆積,形成惡性循環,而是要在老師的引導下,尋求解決問題的辦法,培養分析問題和解決問題的能力。
3、要將“以老師為中心”轉變為“以自己為主體,老師為主導”的學習模式。
數學不是靠老師教會的,而是在老師引導下,靠自己主動思維活動去獲取的,學習數學就是要積極主動地參與教學過程,并經常發現和提出問題,而不能依著老師的慣性運轉,被動地接受所學知識和方法。
4、要養成良好的個性品質。
要樹立正確的學習目標,培養濃厚的學習興趣和頑強的學習毅力,要有足夠的學習信心,實事求是的科學態度,以及獨立思考、勇于探索的創新精神。
5、要養成良好的預習習慣,提高自學能力。
課前預習而“生疑”,“帶疑”聽課而“感疑”,通過老師的點撥、講解而“悟疑”、“解疑”,從而提高課堂聽課效果。預習也叫課前自學,預習的越充分,聽課效果就越好;聽課效果越好,就能更好地預習下節內容,從而形成良性循環。
6、要養成良好的審題習慣,提高閱讀能力。
審題是解題的關鍵,數學題是由文字語言、符號語言和圖形語言構成的,拿到目要“寧停三分”,“不搶一秒”,要在已有知識和解題經驗基礎上,譯字逐句仔細審題,細心推敲,切忌題意不清,倉促上陣,審數學題有時須對題意逐句“翻譯”,將隱含條件轉化為明顯條件;有時需聯系題設與結論,前后呼應挖掘構建題設與目標的橋梁,尋找突破點,從而形成解題思路。
高中數學的學習方法
1、首先是精選題目,做到少而精。
只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
2、其次是分析題目。
解答任何一個數學題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。例如,許多三角方面的題目都是把角、函數名、結構形式統一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關鍵。
3、最后,題目總結。
解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足的,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會。對于一道完成的題目,有以下幾個方面需要總結:
①在知識方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
③能不能把解題過程概括、歸納成幾個步驟(比如用數學歸納法證明題目就有很明顯的三個步驟)。
④能不能歸納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現成的題目類型給學生,讓學生拿著題目套類型,但我們鼓勵學生自己總結、歸納題目類型)。
高中數學的學習方法
這門課我還是比較痛心的。其實從高一開始我的數學就不算好的,只能說還不錯,中等的水平吧。高三一年,考試挺多的,一直在130左右,最后幾次考試也都能到135的水平,可惜最后高考發揮真的很惡心,很失常,有一個題在考場上硬是沒想到怎么做,下來兩分鐘之后就會了。
我想說的是,其實我對數學,尤其是高中文科數學,覺得沒有多困難。知識點就是那些,考試也就是那么些題型。關鍵就看各位同學是不是真能踏踏實實搞清楚教材上的東西,能認真聽老師講課,講典型的題型,是不是能好好做作業,做一些其他的題,做高考真題,是不是能多思考,多研究一下這個題目的思路了。
教材,方法,做題,總結,思考,等等,都是至關重要的。題海戰術對數學,我相信是管用的,不過也得結合每個人自身情況來做。
教材至關重要!教材的重要性我都已經不想再提及了,實在是最基本的。作為一個學生,雖然教材也許會枯燥些,但是里面都是必須學好的東西。所有基礎差的同學,沒有別的可說的,都是,教材上的基礎概念,公式,例題,習題,所有的都必須搞懂,沒得偷懶,否則你會知道后果的!
如果說一個宏觀的我怎么學數學的話,那就是如下內容了。
從高一開始,我就有筆記本,這個是必需的。老師上課的板書從來沒有漏過一個知識點,沒有漏掉過一個例題,都記在筆記本上。而且一定要上課的時候就聽懂老師的思路,即使有不懂的,下課一定要去找老師提問。
筆記本上,基礎概念,公式,例題,老師讓我們課上做的題,都要記下來。其實目的很簡單,以后好復習,而且寫一遍有助于記憶。
下課之后,在每天做作業之前,我都會把筆記本拿出來先看一遍,今天主要什么知識,什么例題,主要的思路方法是什么,然后再去做作業。
其實作業里的很多題都不超出老師上課所涉及到的題型知識。有些確實難的,一定要自己先思考怎么做,實在做不出來就標注一下,拿答案來看。搞清楚自己到底卡在哪個地方了,然后把這個題當作一個典型記下來,當作一個方法的示例。
另外就是自己做的練習了。我當時每一門課都有一本輔導書。或者是中學教材全解或者是王后雄或者是其他的,都是我自己親自到書店去挑的,自己覺得好才去買。我是以自己學習情況來做題的,會的題做一兩個就行了。如果是不會的,就一定會好好做,仔細研究題目整個的思路。后來發現考試里其實也就是很多見過的題型,方法都有共通之處。
高考復習,我就是很乖地跟著老師走。然后做老師的練習。然后自己做高考題,做別的模擬題。查缺補漏,多總結做題的方法。有些題型一開始我也不知道該怎么想,后來做多了,再加上老師一輪復習總結過方法,看看例題,自己慢慢就開竅了,看到之后也不會害怕了。
一定要有自信,不可以有抵觸心理,不可以厭惡一門科目,否則你絕對學不好。我并不喜歡數學,但是我為了高考是一定會把它好好學好的。得數學者得天下,這句話沒錯!
關于所有的考試和練習:
請大家珍惜每一次練習,考試。
這種時候都是對自己這一階段學習的一次檢查。是非常必要的,查缺補漏都靠這個了。
不要太過于在乎分數。
每次做完一定要找出自己的問題,是基礎不牢,還是粗心大意,還是方法沒有掌握等等。在困惑的時候一定要和老師好好交流。
一定記住,不要把問題歸結于什么心態不好,不在狀態這種虛無縹緲的原因上,一定要找到最基礎最根本的原因!否則你就永遠暈頭轉向,不知道該朝哪個方向努力!
關于作弊,提前查答案等等不誠實的行為。我只能說,出來混的,遲早要還的,不信的話,高考見吧。浪費掉的是你每次練習檢驗自己的機會,浪費掉的是自己這么多年來的學習,你自己的心里也會不安的!
在一輪復習中,老師會按照知識點復習。復習中,老師在課堂上會講一些經典的例題和一些必會的基礎題型。這些題型請大家務必做好做透,將它的方法吃透。上完課后做作業前,請大家把這些題再仔細看一遍,之后再開始做作業,事半功倍。
請大家在每個知識點結束時爭取將這個知識點的問題解決。不說難題都沒有問題,至少基本的概念,方法要會。
在做難題的時候,要注意方法。其實數學也是有方法可找的。就比如說解析幾何,橢圓這類型的題,是聯立還是點差法,在每次做完題后,根據題目設問的類型要進行反思和整理。
考試的時候,大家務必拿到的分,就是選擇除最后一道,填空除最后一道,大題的前幾道,這些題拿到了,上100肯定沒問題。那些難題,再提升提升,120以上應該是可以的。
做數學題一定要練速度,在做作業的時候也不要拖沓。但是記住數學用掉你多少時間都不過分,數學的確對于文科生來說挺重要的,如果你的文數學的好會非常沾光的。
上面是原來寫的,很簡略。現在就每個大的知識點談談我的看法。
函數:
這是最開始的一個內容。我高一學的也不能說有多好。考試分數也不算高,但是慶幸的是教材上的概念公式啥的搞得很清楚。所以在一輪復習的時候也就比較仔細去聽這個章節。
其實函數要求掌握的就是函數的性質以及幾個特別的函數。題型也都大同小異。我就是跟著老師的復習腳步走。我們的復習書是《步步高》,我按照老師要求先填好最前面的知識結構,然后看給出的例題以及解析,然后按照老師要求一個個去做題。不會的題就標出來,每次考試前就拿著這本書去復習。
像函數,我當時在學校,在家里,在外面的輔導機構,很多題型做了很多遍,很多經典的題型做了一遍又一遍,方法自然就很熟悉了。
導數:
這一塊看似很難。剛開始做大題的時候,導數大題永遠做不好,最后一問永遠不知道是什么方法,即使老師都已經教過幾次了。
后來就覺得,這樣下去不行,絕對不可以給自己設下限制,不能潛意識里覺得做不了,一定要試著去做。就從一個很普遍的求范圍的題下手了。看過去其實還是不敢下手去做,但后來就模仿老師的方法,將要求的那個a放到一邊,其他的都放到另外一邊。然后對另外一邊的式子求導,求范圍,進而求出a的范圍。后來這么一做發現,也不過如此,沒有難到哪里去。
后來就是在做題的時候,積極吸收老師講過的方法,結合題目的情況,多試幾次。哪怕這次做不對,就記下來,以后做的時候又多了一條思路。
高中數學的學習方法
一、培養濃厚的興趣
高中的數學概念抽象、習題繁多、教學密度大,因此,高一過后,一些同學對數學望而生畏。
數學的學習其實不會很難,關鍵是你是否愿意去嘗試。當你敢于猜想,說明你擁有數學的思維能力;而當你能驗證猜想,則說明你已具備了學習數學的天賦!認真地學好高二數學,你能領悟到的還有:怎么用最少的材料做滿足要求的物件;如何配置資源并投入生產才能獲得最多利潤;優美的曲線為什么可以和代數方程建立起關系;為什么出車禍比中獎容易得多;為什么一個年段的各個班級常常出現生日相同的同學……
當你陷入數學魅力的“圈套”后,你已經開始走上學好數學的第一步!
二、學會預習和聽課
對課本上的內容,上課之前最好能夠首先預習一下,否則上課時有一個知識點沒有跟上老師的步驟,下面的就不知所以然了,如此惡性循環,就會開始厭煩數學,對學習來說興趣是很重要的。課后針對性的練習題一定要認真做,不能偷懶,也可以在課后復習時把課堂例題反復演算幾遍,畢竟上課的時候,是老師在進行題目的演算和講解,學生在聽,這是一個比較機械、比較被動的接受知識的過程。也許你認為自己在課堂上聽懂了,但實際上你對于解題方法的理解還沒有達到一個比較深入的程度,并且非常容易忽視一些真正的解題過程中必定遇到的難點。“好腦子不如賴筆頭”。對于數理化題目的解法,光靠腦子里的大致想法是不夠的,一定要經過周密的筆頭計算才能夠發現其中的難點并且掌握化解方法,最終得到正確的計算結果。
三、及時復習和小結:
實際上無論你是否完成了入門,或是已經進入到了一個更高的境界,你要做的另外一件事就是學好基礎知識。這點最重要。數學的基礎知識不光包括理解定義,熟記公式,會基本的公式運用,還包括解題步驟、相當的解題經驗,當然還有計算準確性。
下面逐個說一下:
(1)理解定義:理解定義并不是背,有很多定義我也不記得,理解就行,沒人讓你默寫某某東西的定義。
(2)熟記公式:這個不用說了吧。
(3)會基本的公式運用:不包括靈活運用。
(4)解題步驟:這也不能輕視,從最已開始學習時就要注意。步驟和邏輯性有直接關系,如果你邏輯性強,那你步驟寫的一定不會太差,反過來是否成立我沒試過。
(5)相當的解題經驗:這個最重要,但不是死做題。有些題,你不會,但你做過,或者做過類似的,這樣你就能照葫蘆畫瓢解出來,從成績上看這跟你會是一樣的。很誘人吧。
(6)計算準確性:馬虎,也算非智力性錯誤的一種,這一直都是一個問題。實際上我也馬虎,馬虎了5年+4年+3年,始終也沒有解決,高考時莫名其妙的沒馬虎。但是像我這樣幸運的人實在是很少,大家不要抱僥幸心理。
這些我相信,大家無論天資如何,一定都能做到,如果你做不到,只等說明你學習不努力或心態不正或有其他教育以外的問題。
要善于總結歸類,尋找不同的題型、不同的知識點之間的共性和聯系,把學過的知識系統化。舉個具體的例子:高一代數的函數部分,我們學習了指數函數、對數函數、冪函數、三角函數等好幾種不同類型的函數。但是把它們對比著總結一下,你就會發現無論哪種函數,我們需要掌握的都是它的表達式、圖象形狀、奇偶性、增減性和對稱性。那么你可以將這些函數的上述內容制作在一張大表格中,對比著進行理解和記憶。在解題時注意函數表達式與圖形結合使用,必定會收到好得多的效果。
最后就是要加強課后練習,除了作業之外,找一本好的參考書,盡量多做一下書上的練習題(尤其是綜合題和應用題)。熟能生巧,這樣才能鞏固課堂學習的效果,使你的解題速度越來越快。
四、學習解題
我們知道,學習數學需要通過復習來循序漸進地提高自己的數學能力。有的同學簡單地把復習理解為做大量的題目,也有的同學認為復習就是記憶、背誦課本中的有關概念、定理、公式等。可見,許多同學對復習的認識還存在誤區:沒有真正認識到數學學科的特點,在復習方法上沒有和其他學科區別開來。
數學是應用性很強的學科,學習數學就是學習解題。搞題海戰術的方式、方法固然是不對的,但離開解題來學習數學同樣也是錯誤的。其中的關鍵在于對待題目的態度和處理解題的方式上。
——首先是精選題目,做到少而精。只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
——其次是分析題目。解答任何一個數學題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。例如,許多三角方面的題目都是把角、函數名、結構形式統一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關鍵。
——最后,題目總結。解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足的,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會。對于一道完成的題目,有以下幾個方面需要總結:
①在知識方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
③能不能把解題過程概括、歸納成幾個步驟(比如用數學歸納法證明題目就有很明顯的三個步驟)。
④能不能歸納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現成的題目類型給學生,讓學生拿著題目套類型,但我們鼓勵學生自己總結、歸納題目類型)。
五、強化運算能力
多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
高中數學的學習方法
1.審題與解題的關系
有的考生對審題重視不夠,匆匆一看急于下筆,以致題目的條件與要求都沒有吃透,至于如何從題目中挖掘隱含條件、啟發解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細地審題,準確地把握題目中的關鍵詞與量?如“至少”,“a>0”,自變量的取值范圍等,從中獲取盡可能多的信息,才能迅速找準解題方向。
2.“會做”與“得分”的關系
要將你的解題策略轉化為得分點,主要靠準確完整的數學語言表述,這一點往往被一些考生所忽視,因此卷面上大量出現“會而不對”“對而不全”的情況,考生自己的估分與實際得分差之甚遠。如立體幾何論證中的“跳步”,使很多人丟失1/3以上得分,代數論證中“以圖代證”,盡管解題思路正確甚至很巧妙,但是由于不善于把“圖形語言”準確地轉譯為“文字語言”,得分少得可憐;再如去年理17題三角函數圖像變換,許多考生“心中有數”卻說不清楚,扣分者也不在少數。
3.快與準的關系
只有“準”才能得分,只有“準”你才可不必考慮再花時間檢查,而“快”是平時訓練的結果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。如去年第21題應用題,此題列出分段函數解析式并不難,但是相當多的考生在匆忙中把二次函數甚至一次函數都算錯,盡管后繼部分解題思路正確又花時間去算,也幾乎得不到分,這與考生的實際水平是不相符的。適當地慢一點、準一點,可得多一點分;相反,快一點,錯一片,花了時間還得不到分。
4.難題與容易題的關系
拿到試卷后,應將全卷通覽一遍,一般來說應按先易后難、先簡后繁的順序作答。近年來考題的順序并不完全是難易的順序,因此在答題時要合理安排時間,不要在某個卡住的題上打“持久戰”,那樣既耗費時間又拿不到分,會做的題又被耽誤了。這幾年,數學試題已從“一題把關”轉為“多題把關”,因此解答題都設置了層次分明的“臺階”,入口寬,入手易,但是深入難,解到底難,因此看似容易的題也會有“咬手”的關卡,看似難做的題也有可得分之處。所以考試中看到“容易”題不可掉以輕心,看到難題不要膽怯,冷靜思考、仔細分析,定能得到應有的分數。
高中數學的學習方法
1、積極調整心態。
對于高一學生暫時學數學有困難的問題,千萬不要產生畏難情緒,因為大部分的高中生都遇到過這種問題。困難是暫時的,只要樹立好學習數學的信心,找好學習數學的方法,就一定能學好數學的。高一學生要調整好自己的心態,學會對自己的學習情況進行評估,分數可以直觀的反應出自己的一些情況,只有明白自己的問題,才能有效的糾正它。
2、多動筆、勤做題。
在高中的數學課堂上,老師的板書還是挺多的。這個時候需要高一學生跟著老師勤動筆,勤做題。因為不動腦跟不上老師的思路,不動筆,就不會知道下一步是什么。多動筆,不僅是需要學生們幾段,更重要的是通過解題步驟的書寫,理清自己的思路。
3、重視概念的學習。
高中數學中有很多概念知識,是數學重要的組成部分,很多時候對于數學概念的了解,不能只局限于字面上,要學會從正面理解概念,還要能舉出反例,甚至是從符號,圖形角度來理解概念。
4、做題后反思。
高一學生一定要明確一點,就是現在正做著的題目,一定不是考試的題目。所以做題過程中最重要的是題目的解題思路和方法。所以要把自己做過的每道題都加以反思。總結出這多提是什么內容,解題方法是什么,運用了哪些數學知識。時間一長自然會提高數學成績。
高中數學的學習方法
(1)、立足課本、抓好基礎
現在高考非常重視三角函數圖像與性質等基礎知識的考查,所以在學習中首先要打好基礎。
(2)三角函數的定義一定要清楚
我們在學習三角函數時,老師就會強調我們要把角放在平面直角坐標系中去討論。角的頂點放在坐標原點,始邊放在X的軸的正半軸上,這樣再強調六種三角函數只與三個量有關:即角的終邊上任一點的橫坐標x、縱坐標y以及這一點到原點的距離r中取兩個量組成的比值,這里得強調一下,對于任意一個α一經確定,它所對的每一個比值是唯一確定的,也就說是它們之間滿足函數關系。并且三者的關系是,x2+y2=r2,x,y可以任意取值,r只能取正數。
(3)同角的三角函數關系
同角的三角函數關系可以分為平方關系:sin2α+cos2α=1、tan2α+1=sec2α、cotα2+1=csc2α,倒數關系:tanαcotα=1,商的關系:tanα=sinα/cosα等等,對于同角的三角函數,直接用三角函數的定義證明比較容易,記憶也比較方便,相關角的三角函數的關系可以分為終邊相同的角、終邊關于x軸對稱的角、終邊關于直線y=x對稱的角、終邊關于y軸對稱的角、終邊關于原點對稱的角五種關系。
(4)加強三角函數應用意識
三角函數產生于生產實踐,也被廣泛應用與實踐,因此,應該培養我們對三角函數的應用能力。
高中數學的學習方法
一、課內重視聽講,課后及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我_,要有自己不垮,誰也不能打垮我的自豪感。
解析幾何:
這塊剛開始做,也是最后一問永遠不會,就是不敢去做,直接跳過的那種題。后來題目做多了后發現,那些題,無論如何把韋達公式放上去絕對沒錯。就算算不出來擺上去也會有分數的。
在做難題的時候,要注意方法。其實數學也是有方法可找的。就比如說解析幾何,橢圓這類型的題,是聯立還是點差法,在每次做完題后,根據題目設問的類型要進行反思和整理。
練習
高考前做幾套押題卷,來模擬高考是非常有必要的,那么該選擇什么類型的試題呢?總之數學一定要多做練習,整理錯題集。
(一)指導提高聽課的效率是關鍵。
1、課前預習能提高聽課的針對性。
預習中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預習后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養自己的自學能力。
2、聽課過程中的科學。
首先應做好課前的物質準備和精神準備,以使得上課時不至于出現書、本等物丟三落四的現象;上課前也不應做過于激烈的體育運動或看小書、下棋、激烈爭論等。以免上課后還喘噓噓,或不能平靜下來。
其次就是聽課要全神貫注。
全神貫注就是全身心地投入課堂學習,耳到、眼到、心到、口到、手到。
耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納總結,另外,還要聽同學們的答問,看是否對自己有所啟發。
眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢等動作,生動而深刻的接受老師所要表達的思想。
心到:就是用心思考,跟上老師的數學思路,分析老師是如何抓住重點,解決疑難的。
口到:就是在老師的指導下,主動回答問題或參加討論。
手到:就是在聽、看、想、說的基礎上劃出課文的重點,記下講課的要點以及自己的感受或有創新思維的見解。
若能做到上述五到,精力便會高度集中,課堂所學的一切重要內容便會在自己頭腦中留下深刻的印象。
3、特別注意講課的開頭和結尾。
講課開頭,一般是概括前節課的要點指出本節課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。
4、要認真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。
此外還要特別注意老師講課中的提示。
老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。
最后一點就是作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
(二)指導做好復習和總結工作。
1、做好及時的復習。
課完課的當天,必須做好當天的復習。
復習的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復習:先把書,筆記合起來回憶上課老師講的內容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然后打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當天上課內容鞏固下來,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。
2、做好單元復習。
學習一個單元后應進行階段復習,復習方法也同及時復習一樣,采取回憶式復習,而后與書、筆記相對照,使其內容完善,而后應做好單元小節。
3、做好單元小結。
單元小結內容應包括以下部分。
(1)本單元(章)的知識網絡;
(2)本章的基本思想與方法(應以典型例題形式將其表達出來);
(3)自我體會:對本章內,自己做錯的典型問題應有記載,分析其原因及正確答案,應記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
(三)指導做一定量的練習題
有不少同學把提高數學成績的希望寄托在大量做題上。我認為這是不妥當的,我認為,不要以做題多少論英雄,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做一定量的練習是必要的。而對于中檔題,尢其要講究做題的效益,即做題后有多大收獲,這就需要在做題后進行一定的反思,思考一下本題所用的基礎知識,數學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯系起來,你就會得到更多的經驗和教訓,更重要的是養成善于思考的好習慣,這將大大有利于你今后的學習。當然沒有一定量(老師布置的作業量)的練習就不能形成技能,也是不行的。
另外,就是無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學好數學的重要問題。
高中數學:學習技巧
1、心理素質。由于學生在初中特定環境下所具有的榮譽感與成功感能否帶到高中學習,這就要看他(或她)是否具備面對挫折、冷靜分析問題、找出克服困難走出困境的辦法。會學習的學生因學習得法而成績好,成績好又可以激發興趣,增強信心,更加想學,知識與能力進一步發展形成了良性循環,不會學習的學生開始學習不得法而成績不好,如能及時總結教訓,改變學法,變不會學習為會學習,經過一番努力還是可以趕上去的,如果任其發展,不思改進,不作努力,缺乏毅力與信心,成績就會越來越差,能力越得不到發展,形成惡性循環。因此高中學習是對學生心理素質的考驗。
2、學習方式、習慣的反思與認識
(1)學習的主動性。許多同學進入高中后還象初中那樣有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習的主動性,表現在不訂計劃,坐等上課,課前不作預習,對老師要上課的內容不了解,上課忙于記筆記,忽略了真正聽課的任務,顧此失彼,被動學習。
(2)學習的條理性。老師上課一般都要講清知識的來龍去脈,剖析概念的外延,分析重點難點,突出思想方法,而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是忙于趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背,也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
(3)忽視基礎。有些自我感覺良好的學生,常輕視基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的水平,好高騖遠,重量輕質,陷入題海,到正規作業或考試中不是演算出錯就是中途卡殼。
(4)學生在練習、作業上的不良習慣。主要有對答案、不相信自己的結論,缺乏對問題解決的信心和決心;討論問題不獨立思考,養成一種依賴心理素質;慢騰騰作業,不講速度,訓練不出思維的敏捷性;心思不集中,作業、練習效率不高。
3、知識的銜接能力。
初中數學教材內容通俗具體,多為常量,題型少而簡單;而高中數學內容抽象,多研究變量、字母,不僅注重計算,而且還注重理論分析,這與初中相比增加了難度。
另一方面,高中數學與初中相比,知識的深度、廣度和能力的要求都是一次質的飛躍,這就要求學生必須掌握基礎知識與技能為進一步學習作好準備。由于初中教材知識起點低,對學生能力的要求亦低,由于近幾年教材內容的調整,雖然初高中教材都降低了難度,但相比之下,初中降低的幅度大,有的內容為應付中考而不講或講得較淺(如二次函數及其應用),這部分內容不列入高中教材但需要經常提到或應用它來解決其它數學問題,而高中由于受高考的限制,教師都不敢降低難度,造成了高中數學實際難度沒有降低。因此,從一定意義上講,調整后的教材不僅沒有縮小初高中教材內容的難度差距,反而加大了。如不采取補救措施,查缺補漏,學生的成績的分化是不可避免的。這涉及到初高中知識、能力的銜接問題。
【高中數學的學習方法】相關文章:
高中數學的學習方法11-15
高中數學的學習方法12-19
高中數學學習方法08-08
高中數學高效學習方法07-31
高中數學的學習方法(優秀)05-28
高中數學的學習方法(集合)05-28
(熱門)高中數學的學習方法05-17
學高中數學的學習方法10-13
高中數學有效的學習方法04-19