有關高中數學說課稿范文匯編五篇
作為一位無私奉獻的人民教師,可能需要進行說課稿編寫工作,說課稿有助于教學取得成功、提高教學質量。那么應當如何寫說課稿呢?以下是小編為大家收集的高中數學說課稿5篇,僅供參考,歡迎大家閱讀。
高中數學說課稿 篇1
敬的各位專家、評委:
下午好!
我的抽簽序號是____,今天我說課的課題是《_______》第__課時。
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
(一)地位與作用
______是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面______;另一方面______。同時,__________________。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4) 學生層次參次不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據____在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解_______,初步掌握______。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,______;能運用____解決簡單的問題;使學生領會______的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
在______的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
(二)重點難點
本節課的教學重點是________________________,教學難點是_____________________。
三、教法、學法分析
(一)教法
基于本節課的內容特點和__學生的年齡特征,按照__市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.
(二)學法
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
四、教學過程分析
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創設情境,提出問題。
新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
(2)引導探究,建構概念。
數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程.
(3)自我嘗試,初步應用。
有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
(4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
(5)小結歸納,回顧反思。
小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你最大的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?
(二)作業設計
作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.
我設計了以下作業:
(1)必做題
(2)選做題
(三)板書設計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。
以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。
謝謝!
高中數學說課稿 篇2
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。
一、教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。 教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數。
二、教法
根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
三、學法
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四、教學過程
(一)創設情境(3分鐘)
“興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)猜想—推理—證明(15分鐘)
激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。 提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿足關系
注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
(三)總結--應用(3分鐘)
1.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。
2.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的`價值觀。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中
一邊的對角時解三角形的各種情形。完了把時間交給學生。
(五)課堂練習(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發現問題,并解答。
(六)小結反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關系。
2.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
3.會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
五、教學反思
從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。
高中數學說課稿 篇3
一、教材分析
(一)地位與作用
《冪函數》選自高一數學新教材必修1第2章第3節。是基本初等函數之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。從教材的整體安排看,學習了解冪函數是為了讓學生進一步獲得比較系統的函數知識和研究函數的方法,為今后學習三角函數等其他函數打下良好的基礎.在初中曾經研究過y=x,y=x2,y=x—1三種冪函數。這節內容,是對初中有關內容的進一步的概括、歸納與發展,是與冪有關知識的高度升華.本節內容之后, 將把指數函數,對數函數,冪函數科學的組織起來,體現充滿在整個數學中的組織化,系統化的精神。讓學生了解系統研究一類函數的方法.這節課要特別讓學生去體會研究的方法,以便能將該方法遷移到對其他函數的研究.
(二)學情分析
(1)學生已經接觸的函數,確立利用函數的定義域、值域、奇偶性、單調性研究一個函數的意識 ,已初步形成對數學問題的合作探究能力。
(2)雖然前面學生已經學會用描點畫圖的方法來繪制指數函數,對數函數圖像,但是對于冪函數的圖像畫法仍然缺乏感性認識。
(3)學生層次參差不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯系的有機整體。
(一)教學目標
(1)知識與技能
①使學生理解冪函數的概念,會畫冪函數的圖象。
②讓學生結合這幾個冪函數的圖象,理解冪函圖象的變化情況和性質。
(2)過程與方法
①讓學生通過觀察、總結冪函數的性質,培養學生概括抽象和識圖能力。
②使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
①通過熟悉的例子讓學生消除對冪函數的陌生感從而引出概念,引起學生注意,激發學生的學習興趣。
②利用多媒體,了解冪函數圖象的變化規律,使學生認識到現代技術在數學認知過程中的作用,從而激發學生的學習欲望。
③培養學生從特殊歸納出一般的意識,培養學生利用圖像研究函數奇偶性的能力。并引導學生發現數學中的對稱美,讓學生在畫圖與識圖中獲得學習的快樂。
(二)重點難點
根據我對本節課的內容的理解,我將重難點定為:
重點:從五個具體的冪函數中認識概念和性質
難點:從冪函數的圖象中概括其性質。
三、教法、學法分析
(一)教法
教學過程是教師和學生共同參與的過程,教師要善于啟發學生自主性學習,充分調動學生的積極性、主動性,要有效地滲透數學思想方法,努力去提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法。
1、引導發現比較法
因為有五個冪函數,所以可先通過學生動手畫出函數的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發現異同,并進行比較,從而更深刻地領會冪函數概念以及五個冪函數的圖象與性質。
2、借助信息技術輔助教學
由于多媒體信息技術能具有形象生動易吸引學生注意的特點,故此,可用多媒體制作引入情境,將學生引到這節課的學習中來。再利用《幾何畫板》畫出五個冪函數的圖象,為學生創設豐富的數形結合環境,幫助學生更深刻地理解冪函數概念以及在冪函數中指數的變化對函數圖象形狀和單調性的影響,并由此歸納冪函數的性質。
3、練習鞏固討論學習法
這樣更能突出重點,解決難點,使學生既能夠進行深入地獨立思考又能與同學進行廣泛的交流與合作,這樣一來學生對這五個冪函數領會得會更加深刻,在這個過程中學生們分析問題和解決問題的能力得到進一步的提高,班級整體學習氛氛圍也變得更加濃厚。
(二)學法
本節課主要是通過對冪函數模型的特征進行歸納,動手探索冪函數的圖像,觀察發現其有關性質,再改變觀察角度發現奇偶函數的特征。重在動手操作、觀察發現和歸納的過程。
由于冪函數在第一象限的特征是學生不容易發現的問題,因此在教學過程中引導學生將抽象問題具體化,借助多媒體進行動態演化,以形成較完整的知識結構。
四、教學過程分析
(一)教學過程設計
(1)創設情境,提出問題。 新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
問題1:下列問題中的函數各有什么共同特征?是否為指數函數?
由學生討論,總結,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1
這時學生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數值,上述函數式變成:
都是自變量的若干次冪的形式。都是形如
的函數。
揭示課題:今天這節課,我們就來研究:冪函數
(一)課堂主要內容
(1)冪函數的概念
①冪函數的定義。
一般地,函數
叫做冪函數,其中x 是自變量,a是常數。
②冪函數與指數函數之間的區別。
冪函數——底數是自變量,指數是常數;
指數函數——指數是自變量,底數是常數。
(2)幾個常見冪函數的圖象和性質
由同學們畫出下列常見的冪函數的圖象,并根據圖象將發現的性質填入表格
根據上表的內容并結合圖象,總結函數的共同性質。讓學生交流,老師結合學生的回答組織學生總結出性質。
以上問題的設計意圖:數形結合是一個重要的數學思想方法,它包含以數助形,和以形助數的思想。通過問題設計讓學生著手實際,借助行的生動來闡明冪函數的性質。
教師講評:冪函數的性質.
①所有的冪函數在(0,+∞)上都有定義,并且圖像都過點(1,1).
②如果a>0,則冪函數的圖像通過原點,并在區間〔0,+∞)上是增函數.
③如果a<0,則冪函數在(0,+∞)上是減函數,在第一象限內,當x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當x趨向于+∞時,圖像在x軸上方無限地趨近x軸.
④當a為奇數時,冪函數為奇函數;當a為偶數時,冪函數為偶函數。
以問題設計為主,通過問題,讓學生由已經學過的指數函數,對數函數,描點作圖得到五個冪函數的圖像,但是我們應該知道繪制冪函數的圖像比繪制指數函數和對數函數的圖像更為復雜,因為冪函數隨著冪指數的輕微變化會出現較大的變化,因此,在描點作圖之前,應引導學生對幾個特殊的冪函數的性質先進行初步的探究,如分析函數的定義域,奇偶性等,在根據研究結果和描點作圖畫出圖像,讓學生觀察所作圖像特征,并由圖象特征得到相應的函數性質,讓學生充分體會系統的研究方法。同時學生對于歸納性質這一環節相對指數函數,對數函數的性質,學生會有更大的困難。因此,教學中只須對他們的圖像與基本性質進行認識,而不必在一般冪函數上作過多的引申和介紹。在教學中,采用從具體到一般,再從一般到具體的安排。
通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
(3)當堂訓練,鞏固深化
例題和練習題的選取應結合學生認知探究,鞏固本節課的重點知識,并能用知識加以運用。本節課選取主要選取了兩道例題。
例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數。這題先從“形”的角度判斷函數的單調區間和單調性,再用到定義從“數”的角度對函數的單調性進行推理論證,培養學生的數形結合的數學思想和解決問題的專業素養。
例2是補充例題,主要培養學生根據體例構造出函數,并利用函數的性質來解決問題的能力,從而加深學生對冪函數及其性質的理解。注意:由于學生對冪函數還不是很熟悉,所以在講評中要刻意體現出冪函數y=x1。3是增函數與y=x—5/4的圖像的畫法,即再一次讓學生體會根據解析式來畫圖像解題這一基本思路
(4)小結歸納,回顧反思。 小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:
(1)通過本節課的學習,你學到了哪些知識?
(2)通過本節課的學習,你最大的體驗是什么?
(3)通過本節課的學習,你掌握了哪些技能?
(二)作業設計 作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成. 我設計了以下作業:
(1)必做題
(2)選做題
(三)板書設計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對冪函數是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。
謝謝!
高中數學說課稿 篇4
一、教材分析
1.《指數函數》在教材中的地位、作用和特點
《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。
2.教學目標、重點和難點
通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。
技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。
素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:
(1)知識目標:
①掌握指數函數的概念;
②掌握指數函數的圖象和性質;
③能初步利用指數函數的概念解決實際問題;
(2)技能目標:
①滲透數形結合的基本數學思想方法
②培養學生觀察、聯想、類比、猜測、歸納的能力;
(3)情感目標:
①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力
③領會數學科學的應用價值。
(4)教學重點:指數函數的圖象和性質。
(5)教學難點:指數函數的圖象性質與底數a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1.創設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。
4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。
三、學法指導
本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:
1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。
2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。
3.在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。
4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的形成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。
1.創設情景、導入新課
教師活動:
①用電腦展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,
②將學生按奇數列、偶數列分組。
學生活動:
①分別寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;
②回憶指數的概念;
③歸納指數函數的概念;
④分析出對指數函數底數討論的必要性以及分類的方法。
設計意圖:通過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性, 為突破難點做好準備;
2.啟發誘導、探求新知
教師活動:
①給出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規范地畫出這兩個指數函數的圖象③板書指數函數的性質。
學生活動:
①畫出兩個簡單的指數函數圖象
②交流、討論
③歸納出研究函數性質涉及的方面
④總結出指數函數的性質。
設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:
①板書例1
②板書例2第一問
③介紹有關考古的拓展知識。
高中數學說課稿 篇5
函數的單調性
今天我說課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。
一、說教材
1、教材的地位和作用
本節內容選自北師大版高中數學必修1,第二章第3節。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。
2、學情分析
本節課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養學生的理性思維,為后續函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。
教學目標分析
基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:
1.知識與技能(1)理解函數的單調性和單調函數的意義;
(2)會判斷和證明簡單函數的單調性。
2.過程與方法
(1)培養從概念出發,進一步研究性質的意識及能力;
(2)體會數形結合、分類討論的數學思想。
3.情感態度與價值觀
由合適的例子引發學生探求數學知識的欲望,突出學生的主觀能動性,激發學生學習數學的興趣。
三、教學重難點分析
通過以上對教材和學生的分析以及教學目標,我將本節課的重難點
重點:
函數單調性的概念,判斷和證明簡單函數的單調性。
難點:
1.函數單調性概念的認知
(1)自然語言到符號語言的轉化;
(2)常量到變量的轉化。
2.應用定義證明單調性的代數推理論證。
四、教法與學法分析
1、教法分析
基于以上對教材、學情的分析以及新課標的教學理念,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。
2、學法分析
新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法理解函數的單調性及特征。
五、教學過程
為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環節來進行我的教學。
(一)知識導入
溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發展的過程中構建新概念,有利于激發學生的思維和學習的積極主動性。
(二)講授新課
1.問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區間是上升的,在哪個區間是下降的?
通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。
2.觀察函數y=x2隨自變量x變化的情況,設置啟發式問題:
(1)在y軸的右側部分圖象具有什么特點?
(2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1 (3)如何用數學符號語言來描述這個規律? 教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。 (4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢? 類似地分析圖象在y軸的左側部分。 通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞,如:區間內,任意,當x1 仿照單調增函數定義,由學生說出單調減函數的定義。 教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個區間上的局部性質,也就是說,一個函數在不同的區間上可以有不同的單調性。 (我將給出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解) (三)鞏固練習 1練習1:說出函數f(x)=的單調區間,并指明在該區間上的單調性。x 練習2:練習2:判斷下列說法是否正確 ①定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。 ②定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。 1③已知函數y=,因為f(-1) 1我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區間,并指明在該區間x 上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。 (四)歸納總結 我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節課的教學過程做好準備。 (五)布置作業 必做題:習題2-3A組第2,4,5題。 選做題:習題2-3B組第2題。 新課程理念告訴我們,不同的人在數學上可以獲得不同的發展,因此要設計不同程度要求的習題。 二次函數的圖像說課稿 今天我說課的題目是《二次函數的圖像》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。 一、教材分析 教材的地位和作用 本節內容選自北師大版高中數學必修1,第二章第4.1節。二次函數的圖像在教材中起著承上啟下的作用。 學情分析 本節課的學生是高一學生,他們在初中的時候已經學習過有關內容,為本節課的學習打下了基礎,另一方面,二次函數解析式中的系數由常數轉變為參數,使學生對二次函數的圖像由感性認識上升到理性認識,能培養學生利用數形結合思想解決問題的能力。 二、教學目標分析 基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分: 1.知識與技能 理解二次函數中參數a,b,c,h,k對其圖像的影響; 2.過程與方法 通過體驗對二次函數圖像平移的研究方法,能遷移到其他函數圖像的研究。 3.情感態度與價值觀 通過本節的學習,進一步體會數形結合思想的作用,感受到數學中數與形的辯證統一。 三、教學重難點分析 通過以上對教材和學生的分析以及教學目標,我將本節課的重難點確定如下 重點: 二次函數圖像的平移變換規律及應用。 難點: 探索平移對函數解析式的影響及如何利用平移變換規律求函數解析式,并能把平移變換規律遷移到其他函數。 四、教法與學法分析 1、教法分析 基于以上對教材、學情的分析以及新課改的要求,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。 2、學法分析 新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法進行學習。 五、教學過程 為了更好的實現本課的三維目標,并突破重難點,我將設計以下五個環節來進行我的教學。 (1)知識導入 溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x2、y=2x2,讓學生作出這些函數的圖像,然后讓學生比較這些函數圖像的相同點和不同點,由此引入我的新課。一方面讓學生總結復習已有知識,為后面的學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗。 (2)講授新課 例1:畫出函數y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像 讓學生畫出他們的圖像并觀察函數圖像的特點,再讓學生與多媒體課件展示的圖像進行對比,得出結論:若二次函數的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。 前面的練習和例題,基本涵蓋了二次函數圖像平移變換的各種情況,啟發并引導了學生將實例的結論進行總結,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負右移;k正上移,k負下移。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解, (3)鞏固練習 我將組織學生進行練習,完成課本44頁1-3題。通過這種練習的方式,幫助學生鞏固和加深二次函數中參數對圖像的影響。 (4)歸納總結 我先讓學生進行小結,然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,可以進行適當反思,為下一節課的教學過程做好準備。 (5)布置作業 略 【有關高中數學說課稿范文匯編五篇】相關文章: 有關高中數學說課稿范文匯編9篇08-15 有關高中數學說課稿范文匯編8篇08-11 有關高中數學說課稿范文匯編七篇08-20 有關高中數學說課稿范文匯編十篇08-19 有關高中數學說課稿范文5篇07-23 有關高中數學說課稿模板匯編五篇07-30 有關高中數學說課稿模板匯編八篇07-02 高中數學經典說課稿范文06-24 有關高中數學說課稿范文合集9篇08-01 篇二:高一數學必修一說課稿