有關(guān)高中數(shù)學(xué)說課稿合集六篇
作為一名默默奉獻的教育工作者,時常要開展說課稿準(zhǔn)備工作,借助說課稿可以提高教學(xué)質(zhì)量,取得良好的教學(xué)效果。那么優(yōu)秀的說課稿是什么樣的呢?以下是小編精心整理的高中數(shù)學(xué)說課稿6篇,歡迎大家分享。
高中數(shù)學(xué)說課稿 篇1
一、教材分析
1、教材內(nèi)容
本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2。1。3函數(shù)簡單性質(zhì)的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題。
2、教材所處地位、作用
函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì)。通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運用單調(diào)性知識解決一些簡單的實際問題。通過上述活動,加深對函數(shù)本質(zhì)的認(rèn)識。函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ)。此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一。從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法。
3、教學(xué)目標(biāo)
。1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性
的方法;
。2)過程與方法:從實際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
。3)情感態(tài)度價值觀:讓學(xué)生體驗數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì)。
4、重點與難點
教學(xué)重點(1)函數(shù)單調(diào)性的概念;
(2)運用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性。
教學(xué)難點(1)函數(shù)單調(diào)性的知識形成;
。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性。
二、教法分析與學(xué)法指導(dǎo)
本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:
1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性。
2、在運用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決。
3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用。具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成書面表達。
4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性。
在學(xué)法上:
1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的一個飛躍。
三、 教學(xué)過程
教學(xué)
環(huán)節(jié)
教 學(xué) 過 程
設(shè) 計 意 圖
問題
情境
。úシ胖醒腚娨暸_天氣預(yù)報的音樂)
滿足在定義域上的單調(diào)性的討論。
2、重視學(xué)生發(fā)現(xiàn)的過程。如:充分暴露學(xué)生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學(xué)生認(rèn)知結(jié)構(gòu)升華、發(fā)現(xiàn)的過程。
3、重視學(xué)生的動手實踐過程。通過對定義的解讀、鞏固,讓學(xué)生動手去實踐運用定義。
4、重視課堂問題的設(shè)計。通過對問題的設(shè)計,引導(dǎo)學(xué)生解決問題。
高中數(shù)學(xué)說課稿 篇2
各位評委老師,大家好!
我是本科數(shù)學(xué)**號選手,今天我要進行說課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時《函數(shù)單調(diào)性與最大(。┲怠罚ǹ梢栽谶@時候板書課題,以緩解緊張)。我將從教材分析;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過程;教學(xué)評價五個方面來陳述我對本節(jié)課的設(shè)計方案。懇請在座的專家評委批評指正。
一、教材分析
1、 教材的地位和作用
。1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí);
。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進行學(xué)習(xí)的,同時又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)
。3)它是歷年高考的熱點、難點問題
。ǜ鶕(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉)
2、 教材重、難點
重點:函數(shù)單調(diào)性的定義
難點:函數(shù)單調(diào)性的證明
重難點突破:在學(xué)生已有知識的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)
3.學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強.
二、教學(xué)目標(biāo)
知識目標(biāo):
(1)函數(shù)單調(diào)性的定義
。2)函數(shù)單調(diào)性的證明
能力目標(biāo):
培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想
情感目標(biāo):
培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識
。ㄟ@樣的教學(xué)目標(biāo)設(shè)計更注重教學(xué)過程和情感體驗,立足教學(xué)目標(biāo)多元化)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無定法”,只有方法得當(dāng)才會有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動學(xué)生的積極性、主動性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價法
2、學(xué)法分析
“授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。
。ㄇ叭糠钟脮r控制在三分鐘以內(nèi),可適當(dāng)刪減)
四、教學(xué)過程
1、以舊引新,導(dǎo)入新知
通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然)
2、創(chuàng)設(shè)問題,探索新知
緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。
讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。
讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。
3、 例題講解,學(xué)以致用
例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習(xí)效果。
例2是將函數(shù)單調(diào)性運用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結(jié)
本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組 習(xí)題1.3A組1、2、3 ,二組 習(xí)題1.3A組2、3、B組1、2
6、板書設(shè)計
我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點,讓學(xué)生一目了然。
。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學(xué)生的活動)
五、教學(xué)評價
本節(jié)課是在學(xué)生已有知識的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動學(xué)生的積極性跟主動性,及時吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動機和外界刺激協(xié)調(diào)作用,促進其數(shù)學(xué)素養(yǎng)不斷提高。
高中數(shù)學(xué)說課稿 篇3
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
二、學(xué)情分析:
學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對數(shù)的運算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個加法法則的特點。
三、教學(xué)目的:
1、通過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。
四、教學(xué)重、難點
重點:向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學(xué)生認(rèn)識到三角形法則的實質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。
五、教學(xué)方法
本節(jié)采用以下教學(xué)方法:1、類比:由數(shù)的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運用。3、講解與練習(xí):對兩個法則特點的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。4、多媒體技術(shù)的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
六、數(shù)學(xué)思想的體現(xiàn):
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數(shù)的加法進行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。
3、歸納思想:主要體現(xiàn)在以下三個環(huán)節(jié)①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學(xué)生對兩個加法法則,尤其是三角形法則的理解,步步深入。
七、教學(xué)過程:
1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。
2、引入新課:
。1)平行四邊形法則的引入。
學(xué)生在物理學(xué)中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學(xué)生認(rèn)識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設(shè)計意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點,用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的“起點相同”這一特點的認(rèn)識,例1的講解使學(xué)生認(rèn)識到當(dāng)表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。
。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。
這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。
設(shè)計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認(rèn)識到兩個法則之間的密切聯(lián)系,理解它們的實質(zhì),而且銜接自然,能夠使學(xué)生對比地得出兩個法則的特點與實質(zhì),并對兩個法則的特點有較深刻的印象。
(3)共線向量的加法
方向相同的兩個向量相加,對學(xué)生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度!币龑(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
方向相反的兩個向量相加,對學(xué)生來說是個難點,首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:“異號兩數(shù)相加,用較大
的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號!鳖惐犬愄杻蓴(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導(dǎo)學(xué)生嘗試運用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。
反思過程,學(xué)生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設(shè)計意圖:通過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識,使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。
。4)向量加法的運算律
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角
形法則得出,理解起來沒什么困難,再一次強化了學(xué)生對兩個法則特點及實質(zhì)的認(rèn)識。
、诮Y(jié)合律:結(jié)合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。
接下來是對應(yīng)的兩個練習(xí),運用交換律與結(jié)合律計算向量的和。
設(shè)計意圖:運算律的引入給加法運算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學(xué)生明白,三角形法則適用于任意多個向量相加。
3、小結(jié)
先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認(rèn)識,也給學(xué)生一個概括本節(jié)知識的機會,然后用課件展示小結(jié)內(nèi)容,使學(xué)生印象更深。
。1)平行四邊形法則:起點相同,適用于不共線向量的求和。
(2)三角形法則首尾相接,適用于任意多個向量的求和。
。3)運算律
高中數(shù)學(xué)說課稿 篇4
各位老師,大家好!
我是08數(shù)學(xué)本科(2)班的xx,我今天說課的題目是集合的含義與表示.下面我先對教材進行分析.
一、教材分析
集合的含義與表示是選自高中新課標(biāo)A版教材必修1第一章第一節(jié)內(nèi)容。在此之前,學(xué)生已經(jīng)接觸過集合的一些相關(guān)概念,如自然數(shù)的集合、有理數(shù)的集合.集合是一個基礎(chǔ)性概念,是數(shù)學(xué)以至所有科學(xué)的基礎(chǔ),應(yīng)用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現(xiàn),在高考中具有不可忽視的地位.本節(jié)內(nèi)容能夠培養(yǎng)學(xué)生的探索精神和數(shù)學(xué)素養(yǎng).
二、教學(xué)目標(biāo)
根據(jù)上述對教材的分析,我確定本節(jié)課的教學(xué)目標(biāo)為 1. 知識與技能目標(biāo) 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數(shù)集.培養(yǎng)學(xué)生的抽象思維能力、分析能力、判斷能力.
2. 過程與方法目標(biāo)
應(yīng)用自然語言與集合語言描述不同的具體問題,與學(xué)生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.
3. 情感態(tài)度價值觀目標(biāo)
使得學(xué)生感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美. 培養(yǎng)學(xué)生正確的、高尚的、唯物的價值觀.培養(yǎng)學(xué)生獨立思考、敢于創(chuàng)新、勇于探索的科學(xué)精神,激發(fā)同學(xué)們學(xué)習(xí)數(shù)學(xué)的興趣. 三、重點和難點
重點:根據(jù)上述對教材的分析,確定的教學(xué)目標(biāo),我確定本節(jié)課的教學(xué)重點為:集合的含義,集合的表示方法.
難點:考慮到學(xué)生已有的知識基礎(chǔ)與認(rèn)知能力,我認(rèn)為教學(xué)難點是集合的表示方法. 關(guān)鍵:學(xué)好本節(jié)課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學(xué)方法 1.學(xué)情分析
。1)生理特點:高中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步走向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨之迅速發(fā)展.
。2)心理特點:高中學(xué)生雖有好奇,好表現(xiàn)的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說教.
。3)認(rèn)知障礙:有的學(xué)生遺忘了學(xué)過的知識,有的學(xué)生想象能力與歸納能力較差. 2.教法學(xué)法
根據(jù)上面的分析,從高中生的心理特點和認(rèn)知水平出發(fā),結(jié)合學(xué)生的實際情況與認(rèn)知障礙,按照突出重點,突破難點,本節(jié)課采用學(xué)生廣泛參與,師生共同探討的啟發(fā)式教學(xué)法. 五、教學(xué)過程(用描述性語言,不要具體化。
根據(jù)以上分析,我對本節(jié)課的教學(xué)過程作如下安排:
1.引入課題
先引導(dǎo)學(xué)生回顧自然數(shù)的集合,有理數(shù)的集合,再提出問題:集合的含義是什么呢? 2.新課講解
(1)分析自然數(shù)的集合,有理數(shù)的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.
。2)根據(jù)上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見的數(shù)集.
。3)為了化解教學(xué)難點,我將結(jié)合具體的例子,講解列舉法與描述法.
。4)為了加強學(xué)生對集合的含義的理解,我將與學(xué)生一起歸納出集合的元素的特征. (5)為了提高學(xué)生解決實際問題的能力,我將講解三個不同題型、不同難度的例題. 3.課堂練習(xí)
為了使得學(xué)生掌握等差數(shù)列的定義與通項公式,提高解題技能,我將在課堂上布置3道不同類型、不同難度的練習(xí)題.
4.歸納小結(jié)
完成以上的教學(xué)內(nèi)容后,我將組織學(xué)生對本節(jié)課的內(nèi)容做一個總結(jié),強調(diào)重點. 5.布置作業(yè)
為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置3道不同類型、不同難度的作業(yè)題. 六、板書設(shè)計
結(jié)合中學(xué)黑板的特點,我將如下板書本節(jié)教學(xué)內(nèi)容: 集合的含義與表示 實例 1. 2. 3. 集合的含義 常見數(shù)集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習(xí) 作業(yè) 各位老師,以上只是我的一種預(yù)設(shè)方案,但課堂千變?nèi)f化,我將根據(jù)實際情況靈活掌握,隨機發(fā)揮.本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝! 1.1.2集合間的基本關(guān)系
數(shù)學(xué)必修1第一章第二節(jié)第1小節(jié)《集合間的基本關(guān)系》說課稿.
一 、教學(xué)內(nèi)容分析
集合概念及其理論是近代數(shù)學(xué)的基石,集合語言是現(xiàn)代數(shù)學(xué)的基本語言,通過學(xué)習(xí)、使用集合語言,有利于學(xué)生簡潔、準(zhǔn)確地表達數(shù)學(xué)內(nèi)容,高中課程只將集合作為一種語言來學(xué)
習(xí),學(xué)生將學(xué)會使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象,發(fā)展運用數(shù)學(xué)語言進行交流的能力.
本章集合的初步知識是學(xué)生學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)習(xí)的出發(fā)點。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎(chǔ)上,進一步學(xué)習(xí)集合與集合之間的關(guān)系,同時也是下一節(jié)學(xué)習(xí)集合之間的運算的基礎(chǔ),因此本小節(jié)起著承上啟下的重要作用.
本節(jié)課的教學(xué)重視過程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過問題情境的設(shè)置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數(shù)學(xué)思維。
二、學(xué)情分析
本節(jié)課是學(xué)生進入高中學(xué)習(xí)的第3節(jié)數(shù)學(xué)課,也是學(xué)生正式學(xué)習(xí)集合語言的第3節(jié)課。由于一切對于學(xué)生來說都是新的,所以學(xué)生的學(xué)習(xí)興趣相對來說比較濃厚,有利于學(xué)習(xí)活動的展開。而集合對于學(xué)生來說既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數(shù)軸求簡單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語言來描述集合之間的關(guān)系。而從具體的實例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學(xué)生是一個挑戰(zhàn)。
根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點,確定本節(jié)課的教學(xué)目標(biāo)和教學(xué)重、難點如下:
三、教學(xué)目標(biāo): 知識與技能目標(biāo):
。1)理解集合之間包含和相等的含義; (2)能識別給定集合的子集;
(3)能使用Venn圖表達集合之間的包含關(guān)系 過程與方法目標(biāo):
。1)通過復(fù)習(xí)元素與集合之間的關(guān)系,對照實數(shù)的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;
(2)初步經(jīng)歷使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象的過程,體會集合語言,發(fā)展運用數(shù)學(xué)語言進行交流的能力;
情感、態(tài)度、價值觀目標(biāo):
。1)了解集合的包含、相等關(guān)系的含義,感受集合語言在描述客觀現(xiàn)實和數(shù)學(xué)問題中的意義;
。2)探索利用直觀圖示(Venn圖)理解抽象概念,體會數(shù)形結(jié)合的思想。
四、本節(jié)課教學(xué)的重、難點:
重點:(1)幫助學(xué)生由具體到抽象地認(rèn)識集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點:集合關(guān)系與其特征性質(zhì)之間的.關(guān)系 五、教學(xué)過程設(shè)計
1.新課的引入——設(shè)置問題情境,激發(fā)學(xué)習(xí)興趣
我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習(xí)方式。那我們來思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當(dāng)學(xué)生感興趣時;當(dāng)學(xué)生智力遭遇到挑戰(zhàn)時;當(dāng)學(xué)生能自主地參與探索和創(chuàng)新時;當(dāng)學(xué)生能夠?qū)W以致用時;當(dāng)學(xué)生得到鼓勵與信任時,他們學(xué)得最好。數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上,這樣才能讓學(xué)生體驗到成就感,保持積極的興奮狀態(tài)。而集合的語言對于學(xué)生來說是陌生的,雖然比較容易理解,但是由于概念多,符號多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長時間興趣盎然地投入到集合關(guān)系的學(xué)習(xí)中呢?我在整個教學(xué)過程中層層設(shè)問,不斷地向?qū)W生提出挑戰(zhàn),以激發(fā)學(xué)生的學(xué)習(xí)興趣。在引入的環(huán)節(jié),我設(shè)計了下面的問題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數(shù)與數(shù)之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎(chǔ)上提出這一節(jié)課我們來共同探討集合之間的基本關(guān)系。(板書課題)
2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問題情境1的探究:
具體實例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};
此環(huán)節(jié)設(shè)置了三個具體實例,包含了有限集、無限集、數(shù)集(包括不等式)、圖形的集合。第一個例子為有限集數(shù)集,最為簡單直觀,對學(xué)生初步認(rèn)識子集,理解子集的概念很有幫助;第二個例子是圖形集合且是無限集,需要通過探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個例子是無限數(shù)集,基于學(xué)生初中階段已經(jīng)學(xué)習(xí)了用數(shù)軸表示不等式的解集,啟發(fā)學(xué)生可以通過數(shù)形結(jié)合的方式來研究集合之間的關(guān)系,從而引出Venn圖。對第一個例子,借助多媒體演示動畫,幫助學(xué)生體會“任意”性。使學(xué)生在經(jīng)歷直觀感知、觀察發(fā)現(xiàn)的基礎(chǔ)上建構(gòu)子集的概念,并且我在教學(xué)的過程中特別注重讓學(xué)生說,借此來學(xué)習(xí)運用集合語言進行交流,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果我都給予積極的評價。
3、概念的剖析
(1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,
。2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。
這里引入了許多新的符號,對初學(xué)者來說容易混淆,是一個易錯點,因此我在這里設(shè)置了一個填空小練習(xí):
0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1
并引導(dǎo)學(xué)生類比數(shù)與數(shù)之間的“≤”“≥”符號來記憶“?”“?”符號。
4、概念的深化——集合的相等與真子集
問題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個元素,它與集合A之間又可能是什么關(guān)系呢?
高中數(shù)學(xué)說課稿 篇5
各位老師:
今天我說課的題目是《條件語句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計:
一、教材分析
1.教材所處的地位和作用
在此之前,學(xué)生已學(xué)習(xí)了算法的概念、程序框圖與算法的基本邏輯結(jié)構(gòu)、輸入語句、輸出語句和賦值語句,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。這一節(jié)課主要的內(nèi)容為條件語句表示方法、結(jié)構(gòu)以及用法。條件語句與程序圖中的條件結(jié)構(gòu)相對應(yīng),它是五種基本算法語句中的一種,。通過本節(jié)課的學(xué)習(xí),學(xué)生將更加了解算法語句,并能用更全面的眼光看待前面學(xué)過的語句,并為以后的學(xué)習(xí)作好必要的準(zhǔn)備。本節(jié)課對學(xué)生算法語言能力、有條理的思考與清晰地表達的能力,邏輯思維能力的綜合提升具有重要作用。
2.教學(xué)的重點和難點
重點:條件語句的表示方法、結(jié)構(gòu)和用法;用條件語句表示算法。
難點:理解條件語句的表示方法、結(jié)構(gòu)和用法。
二、教學(xué)目標(biāo)分析
1.知識與技能目標(biāo):
、耪_理解條件語句的概念,并掌握其結(jié)構(gòu)。
、茣(yīng)用條件語句編寫程序。
2.過程與方法目標(biāo):
、磐ㄟ^實例,發(fā)展對解決具體問題的過程與步驟進行分析的能力。
⑵通過模仿,操作、探索、經(jīng)歷設(shè)計算法、設(shè)計框圖、編寫程序以解決具體問題的過程,發(fā)展應(yīng)用算法的能力。
⑶在解決具體問題的過程中學(xué)習(xí)條件語句,感受算法的重要意義。
3.情感,態(tài)度和價值觀目標(biāo)
⑴能通過具體實例,感受和體會算法思想在解決具體問題中的意義,進一步體會算法思想的重要性,體驗算法的有效性,增進對數(shù)學(xué)的了解,形成良好的數(shù)學(xué)學(xué)習(xí)情感,增強學(xué)習(xí)數(shù)學(xué)的樂趣。
、仆ㄟ^感受和認(rèn)識現(xiàn)代信息技術(shù)在解決數(shù)學(xué)問題中的重要作用和威力,形成自覺地將數(shù)學(xué)理論和現(xiàn)代信息技術(shù)結(jié)合的思想。
、窃诰帉懗绦蚪鉀Q問題的過程中,逐步養(yǎng)成扎實嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
三、教學(xué)方法與手段分析
1.教學(xué)方法:根據(jù)本節(jié)內(nèi)容邏輯性強,學(xué)生不易理解的特點,本節(jié)教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這種方法的原因是學(xué)生的邏輯能力不是很強,只能通過對實例的認(rèn)真領(lǐng)會及一定的練習(xí)才能掌握本節(jié)知識。
2.教學(xué)手段:運用計算機、圖形計算器輔助教學(xué)
四、教學(xué)過程分析
1.創(chuàng)設(shè)情境(約4分鐘)
首先,我要求學(xué)生們編寫程序,輸入一元二次方程
的系數(shù),輸出它的實數(shù)根。這樣可以把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,因為要解決這一問題,根據(jù)我們之前所學(xué)的三種算法語句是無法解決的,這樣就引出今天我們所要學(xué)習(xí)的內(nèi)容。
2.探究新知(約8分鐘)
為了引入概念,我首先給出了一個基本的應(yīng)用條件語句能夠解決的例題:
例1 編寫一個程序,求實數(shù)x的絕對值。
整個過程由師生共同分析完成。老師要引導(dǎo)學(xué)生分析、研究例題中的兩個程序,既要讓學(xué)生們看到已知的三種語句,更要注意到未知的語句,即條件語句?偨Y(jié)上述例題的程序可得出條件語句的兩種一般格式,接下來由師生共同對這兩種格式進行研究.
3.知識應(yīng)用(約15分鐘)
此環(huán)節(jié)有兩個例題
例2 編寫程序,寫出輸入兩個數(shù)a和b,將較大的數(shù)打印出來
例3 編寫程序,使任意輸入的3個整數(shù)按從大到小的順序輸出.
先把解決問題的思路用程序框圖表示出來,然后再根據(jù)程序框圖給出的算法步驟,逐步把算法用對應(yīng)的程序語句表達出來。(程序框圖先由學(xué)生討論,再統(tǒng)一,然后利用圖形計算器演示,學(xué)生會驚喜的發(fā)現(xiàn):自己也是個編程高手了!這樣可以激發(fā)學(xué)生們的學(xué)習(xí)興趣)
4.練習(xí)鞏固(約4分鐘)
課本第30頁第3題
練習(xí)可鞏固學(xué)生對知識的理解,也可在練習(xí)中發(fā)現(xiàn)問題,使問題得到及時的解決。
5.課堂小結(jié)(約5分鐘)
條件語句的步驟、結(jié)構(gòu)及功能.
知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用
6.布置作業(yè)
課本練習(xí)第3、4題
[設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。
7.板書設(shè)計
1.2.2條件語句
1、條件語句的一般格式
。1)IF-THEN-ELSE語句
格式: 框圖:
(2)IF-THEN語句
格式: 框圖:
2、小結(jié)
。1)
。2)
。3)
2、例1 引例
例2 例4
例3
高中數(shù)學(xué)說課稿 篇6
說課目標(biāo)
(1)知識目標(biāo):掌握拋物線的定義,掌握拋物線的四種標(biāo)準(zhǔn)方程形式,及其對應(yīng)的焦點、準(zhǔn)線。
(2)能力目標(biāo):通過對拋物線概念和標(biāo)準(zhǔn)方程的學(xué)習(xí),培養(yǎng)學(xué)生分析和概括的能力,提高建立坐標(biāo)系的能力,由圓錐曲線的統(tǒng)一定義,形成學(xué)生對事物運動變化、對立、統(tǒng)一的辨證唯物主義觀點。
(3)德育目標(biāo):通過拋物線概念和標(biāo)準(zhǔn)方程的學(xué)習(xí),培養(yǎng)學(xué)生勇于探索、嚴(yán)密細致的科學(xué)態(tài)度,通過提問、討論、思考等教學(xué)活動,調(diào)動學(xué)生積極參與教學(xué),培養(yǎng)良好的學(xué)習(xí)習(xí)慣。
教學(xué)重點:(1)拋物線的定義及焦點、準(zhǔn)線;
(2)利用坐標(biāo)法求出拋物線的四種標(biāo)準(zhǔn)方程;
(3)會根據(jù)拋物線的焦點坐標(biāo),準(zhǔn)線方程求拋物線的標(biāo)準(zhǔn)方程。
教學(xué)難點:(1)拋物線的四種圖形及標(biāo)準(zhǔn)方程的區(qū)分;
(2)拋物線定義及焦點、準(zhǔn)線等知識的靈活運用。
說課方法:啟發(fā)引導(dǎo)法(通過橢圓與雙曲線第二定義引出拋物線)。
依據(jù)建構(gòu)主義教學(xué)原理,通過類比、歸納把新知識化歸到原有的認(rèn)知結(jié)構(gòu)中去(二次函數(shù)與拋物線方程的對比,移圖與建立適當(dāng)建立坐標(biāo)系的方法的歸納)。
利用多媒體教學(xué)
說課過程:
一、課題引入
利用學(xué)生已有知識提問學(xué)生:1、橢圓的第二種定義:到定點與到定直線的距離的比是小于1的常數(shù)的點的軌跡是橢圓。(用課件演示)
2、雙曲線的第二種定義:到定點與到定直線的距離的比是大于1的常數(shù)的點的軌跡是雙曲線。(用課件演示)
由此引出:到定點的距離和到定直線的距離的比是等于1的常數(shù)的點的軌跡
是什么?
(以問題為出發(fā)點,創(chuàng)設(shè)情景,提高學(xué)生求知欲)
教師用直尺、三角板和細繩演示,學(xué)生觀察所得曲線。
從而引出本節(jié)課的學(xué)習(xí)內(nèi)容。
二、講授新課
1.對拋物線的初步認(rèn)識
物理中拋物線的運動軌跡;數(shù)學(xué)中二次函數(shù)的圖象;生活中拋物線的實例(圖片顯示)等。
2.拋物線的定義
3.拋物線標(biāo)準(zhǔn)方程的推導(dǎo):①學(xué)生回顧求曲線方程的步驟(建系、設(shè)點、列方程);
、谌艚裹cF和準(zhǔn)線的距離為()這樣建立坐標(biāo)系?由學(xué)生思考:可能出現(xiàn)的結(jié)果:
四、課堂小結(jié)
1、本節(jié)課的內(nèi)容:拋物線的定義,焦點、準(zhǔn)線的意義及四種標(biāo)準(zhǔn)方程;
2、理解參數(shù)的幾何意義(焦準(zhǔn)距)
3、利用坐標(biāo)法求曲線方程是坐標(biāo)系的適當(dāng)選取。
課后作業(yè):119頁習(xí)題8.52,4
設(shè)計說明:學(xué)生在初中學(xué)習(xí)二次函數(shù)時知道二次函數(shù)的圖象是一個拋物線,在物理的學(xué)習(xí)中也接觸過拋物線(物體的運動軌跡)。因而對拋物線的認(rèn)識比對前面學(xué)習(xí)的兩種圓錐曲線橢圓和雙曲線更多。所以學(xué)生學(xué)起來會輕松。但是要注意的是,現(xiàn)在所學(xué)的拋物線是方程的曲線而不是函數(shù)的圖象。本節(jié)內(nèi)容是在學(xué)習(xí)了橢圓和雙曲線的基礎(chǔ)上,利用圓錐曲線的第二定義統(tǒng)一進行展開的,因而對于拋物線的系統(tǒng)學(xué)習(xí)具有雙重的目標(biāo)性。
拋物線作為點的軌跡,其標(biāo)準(zhǔn)方程的推導(dǎo)過程充滿了辨證法,處處是數(shù)與形之間的對照和相互轉(zhuǎn)化。而要得到拋物線的標(biāo)準(zhǔn)方程,必須建立適當(dāng)?shù)淖鴺?biāo)系,還要依賴焦點和準(zhǔn)線的相互位置關(guān)系,這是拋物線標(biāo)準(zhǔn)方程有四種而不象橢圓和雙曲線只有兩種形式。因而拋物線的標(biāo)準(zhǔn)方程的推導(dǎo)也是培養(yǎng)辨證唯物主義觀點的好素材。
利用圓錐曲線第二定義通過類比方法,引導(dǎo)學(xué)生觀察和對比,啟發(fā)學(xué)生猜想與概括,利用建立坐標(biāo)系求出拋物線的四種標(biāo)準(zhǔn)方程,讓每一個學(xué)生都能動手,動口,動腦參與教學(xué)過程,真正貫徹“教師為主導(dǎo),學(xué)生為主體”的教學(xué)思想。對于標(biāo)準(zhǔn)方程中的參數(shù)及其幾何意義,焦點坐標(biāo)和準(zhǔn)線方程與的關(guān)系是本節(jié)課的重點內(nèi)容,必須讓學(xué)生掌握如何根據(jù)標(biāo)準(zhǔn)方程求、焦點坐標(biāo)、準(zhǔn)線方程或根據(jù)后三者求拋物線的標(biāo)準(zhǔn)方程。特別對于一些有關(guān)距離的問題,要能靈活運用拋物線的定義給予解決。
當(dāng)前素質(zhì)教育的主流是培養(yǎng)學(xué)生的能力,讓學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課采用學(xué)生通過探索、觀察、對比分析,自己發(fā)現(xiàn)結(jié)論的學(xué)習(xí)方法,培養(yǎng)了學(xué)生邏輯思維能力,動手實踐能力以及探索的精神。
【有關(guān)高中數(shù)學(xué)說課稿合集六篇】相關(guān)文章:
有關(guān)高中數(shù)學(xué)說課稿合集八篇07-24
有關(guān)高中數(shù)學(xué)說課稿合集8篇07-19
有關(guān)高中數(shù)學(xué)說課稿合集五篇06-18
有關(guān)高中數(shù)學(xué)說課稿范文合集9篇08-01
有關(guān)高中數(shù)學(xué)說課稿范文合集5篇07-31
有關(guān)高中數(shù)學(xué)說課稿模板合集8篇07-23
有關(guān)高中數(shù)學(xué)說課稿范文合集10篇07-19