- 相關推薦
信號與系統教學中數字圖像處理的運用實踐的論文
無論在學習或是工作中,大家都嘗試過寫論文吧,論文對于所有教育工作者,對于人類整體認識的提高有著重要的意義。你知道論文怎樣寫才規范嗎?下面是小編為大家收集的信號與系統教學中數字圖像處理的運用實踐的論文,僅供參考,希望能夠幫助到大家。
1、數字圖像處理的概念
數字圖像處理(Digital Image Processing)是將自然界的場景轉換為數字信號并利用計算機技術對其進行處理的一門學科,在工農業生產、航空航天、安全檢測等領域有著較為廣泛的應用。研究表明,外界信息的80%都是通過人眼傳到大腦中[7]。
因此,利用數字圖像處理視覺直觀性的特點,理解信號與系統中的相關概念具有重要的現實意義。在數字圖像的成像過程中,相機捕獲自然界場景,并將其轉換為數字圖像,容易受到各種隨機噪聲的干擾。常見的噪聲干擾有椒鹽噪聲和高斯噪聲,圖像平滑處理可以去除噪聲以保證圖像的質量[8],在此過程中需要利用圖像與模板(算子)的卷積機理。
2、數字圖像處理分析卷積實例
2.1卷積的定義
針對信號與系統中的線性系統,系統的輸出是輸入與系統的沖激響應的卷積。如公式(1)所示:y(t)=f(t)*h(t) (1)若系統為離散系統,則相應的輸入輸出及沖激響應信號與系統是電子、通信等相關專業本科生的專業基礎課程,在本課程中,學生主要對連續、離散時間系統進行分析,需要掌握信號的卷積機理,利用傅里葉變換、拉普拉斯變換和Z變換實現時域到頻域(復頻域)的變換,對后續的數字信號處理、通信原理、信息論與編碼等專業課程的學習具有重要的啟發作用。在該課程中,大量的公式推導使講解過程枯燥、繁瑣,如何在有限的課時內將該課程形象地講解,是目前指導該課程的教師所面臨的挑戰之一。
對此,很多教育工作者對該課程的教學進行了一系列的改革。諸葛霞等教師將數字圖像處理用于該課程的教學過程中,對二維圖像分別進行高通、低通濾波,使學生完成從時域到頻域的思維模式的轉變[1]。李蘊華等教師通過MATLAB軟件編程仿真,加深了學生對頻域變換的理解[2-5].向倩等教師從音樂的角度分析周期信號的傅里葉級數,增強學生對信號頻域分析的學習興趣[6]。
本文結合數字圖像的視覺直觀性,分析信號與系統中卷積的概念,幫助學生理解卷積的定義及應用,增強了教學效果,加快了教學進度。
2.2圖像平滑中的卷積過程
高斯卷積模板是一種用于消除高斯噪聲的線性平滑濾波模板,其平滑過程是:移動卷積模板掃描圖像中的每一個像素,位于卷積模板中心位置的像素點的值用模板所確定的鄰域內像素點的加權平均值替代。常用的二維離散高斯函數表達式如公式(3)所示:
其中,高斯函數的均值為0.高斯函數的標準差為σ,用于控制被處理圖像的平滑程度,取值范圍一般為1-10.當高斯函數的標準差σ=0.5,卷積模板大小為3×3時,公式(3)產生了如表1所示的高斯卷積模板。為了進行實驗對比,取σ=1.5,卷積模板大小為7×7時,公式(3)產生了如表2所示的高斯模板。
實驗中采用圖1的原始Lena圖像。首先對圖1的原始Lena圖像加入均值為0,方差為0.01的高斯噪聲,加入高斯噪聲的Lena圖如圖2所示。
使用表1所示的高斯卷積模板(標準差為0.5,卷積模板大小3×3)對加入圖2進行平滑,處理后的圖像如圖3所示。使用表2所示的高斯卷積模板(標準差為1.5,卷積模板大小7×7)對圖2進行平滑,處理后的圖像如圖4所示。對比圖3和圖4,可以得出,高斯函數的標準差和模板越大,圖像被平滑的程度越大,對噪聲的去除效果越好,但同時圖像的細節也被模糊得越多。
因此,利用卷積模板進行圖像平滑時,要分析圖像中噪聲的來源及特征,有針對性地實施卷積過程,以達到理想的效果。
3、結論
本文從信號與系統課程中所涉及的卷積出發,講述了卷積在數字圖像處理中的應用,尤其是高斯卷積在去除圖像中高斯噪聲的作用效果。通過實驗對比,使學生深刻地理解卷積的重要性和現實意義,提高學習信號與系統的效率。
參考文獻:
[1]諸葛霞,袁紅星,孔中華,等.信號與系統課程中數字圖像處理教學案例研究[J.寧波工程學院學報,2014,26(4):79-82.
[2]李蘊華.基于Matlab的《信號與系統》頻域分析[J].武漢科技學院學報,2006,19(5):21-23.
【信號與系統教學中數字圖像處理的運用實踐的論文】相關文章:
數字圖像處理教學中的問題及教學改革的論文05-07
微課在高校聲樂教學中的運用論文04-20
淺談游戲教學法在法語教學中的運用的論文06-26
如何在習作教學中運用發散思維論文06-27
律動教學在小學音樂課堂中的運用論文04-20
交通信號系統論文06-02
歷史教學中如何運用問題教學法教育論文05-06
情感因素在中學英語教學中的運用論文04-12
獨立學院史論課教學中鑒賞模式的運用論文04-29